Saturday, January 22, 2005

The blizzard has kept me home tonight, and away from work I may be able to put in words my goals and aspirations. Both ends are connected with my work on central relativity of numbers.

I have 7 sections dedicated to computer geometry constructions all leading to graphing the changing energy of a solar gravity field planetary orbital.

The orbital itself is the first major change in viewing our solar system profile in 350 years. Along with the orbital I have three other original ideas I feel worthy of copywrite.

- 1. unit parabola
- 2. relative tangent
- 3. unit square space time.

The first step is to secure copywite for the material.

The final step is movement toward publication.

(Taken from flash drive AlexG, original works, central relativity.) So long ago MS equation editor doesn't work!

9/8/24

Well, it has now been 20 years. Not a peep, not a word from the hinterland. No one! I'm still waiting. Need someone to help, editing, and publishing my work as STEM effort of a new approach to understand our being and the fields we live with.

Today I write about the advancing perihelion of planet Mercury. I proffer a philosophical suggestion using curved space parametric geometry.

By constructing mechanical energy curves of an (M_1M_2) orbit, I transfer the shape of motive energy of (M_2) from accretion to spin.

Mercury is the only planet to have motive energy curves of perihelion swallowed by M1. Just a tweet of orbital mass energy, what we would call kinetic energy, for an extra fling of *both* planet and orbit, a mechanical 'hop', a jump in time and space. Motive energy swallowed by (M_1) ; I suggest is lost (motive-energy) time required by (M_2) to complete a neat elliptical curve describing the orbit limit perihelion.

How to read a balance sheet for Curved Space ME.

I read all orbit ME (mechanical energy) with a CSDA Curved Space Directrix. I do so using two unity curves of a basic **CSDA** (curvature and radius of curvature are 1). Such an event happens when **CSDA** energy tangent(*m*) slope reads $(m = \pm 1)@$ +latus rectum endpoint (2,0), a Sir Isaac Newton displacement radius. It is here and only here that two unity curves can exist on an (M_1M_2) central force domain.

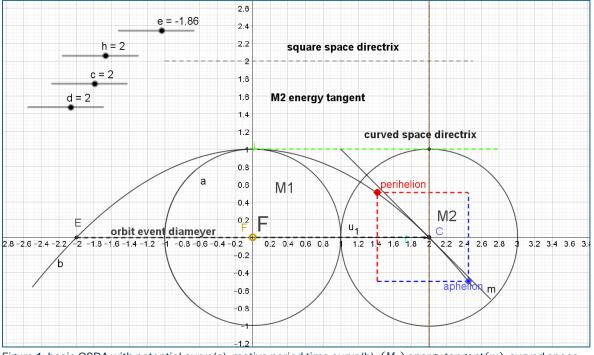
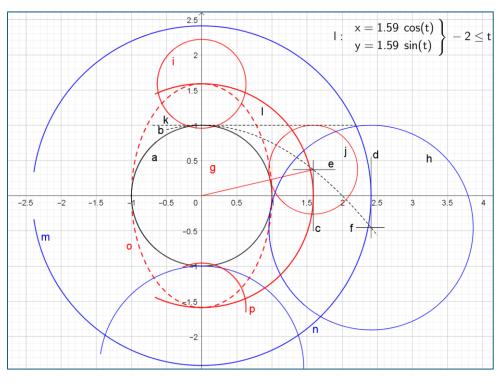


Figure 1: basic CSDA with potential curve(a), motive period time curve(b), (M_2) energy tangent(m), curved space directrix and square space directrix.

All sustainable motive energy curves need maintain contact with both the Central Force curved space directrix and (M_1) potential to exist.

Let $\operatorname{curve}(a)$ be the potential energy curve of (M_1) .

Let (C) be the central motive energy curve of (M_2) .


Let (b) be the period time curve of (M_2) .

Let EC be the average energy orbit/diameter of (M_2)

mercury energy curves: $AL\Sigma XAND\Sigma R$

central relative position	square space	curved space
perihelion	46 000 000	1.58867
aphelion	69820000	2.41133
average	57910000	2
ASI	28954613	1
average v	47.87	
f (π)	10684630	0.369032
f (α)	-13135678	-0.453626
focal radius (π)	47 225 370	1.63097
focal radius (α)	71045678	2.45363

Graphic view with elliptical ME curve of orbit perihelion, ellipse(*o*). minor axis is central force potential, major axis orbit limit energy perihelion.

Blue curves(*m*, *h*) represent orbit limits aphelion. Curve(m) the orbit limit of aphelion attempted escape, most remote distance from sun. Curve(*h* and *n*) are motive energy curves of aphelion's

attempted escape, accretion(h) and spin(n). They seem to not be affected by (M_1) space-time at all.

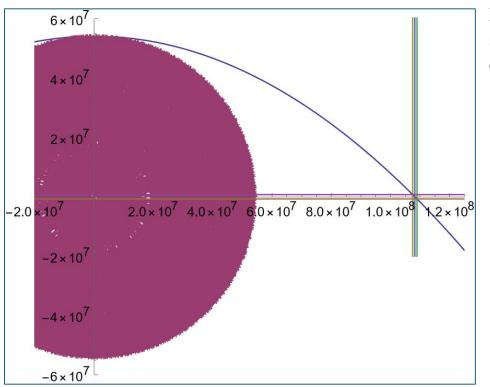
mercury energy curves

ΑLΣΧΑΝDΣR

Name	Description	Value	Caption
Curve a	Curve(cos(t), sin(t), t, -4, 4)	a:(cos(t), sin(t))	independent curve
Curve f	Curve(t, -0.45, t, 2.2, 2.6)	f:(t, -0.45)	low energy limit aphelion
Curve b	Curve(t, t ² / -4 + 1, t, -0.5, 2.5)	$b:(t, t^2 / -4 + 1)$	period time curve
Curve	Curve(t, (1068463t) /	g:(t, (1068463t) /	focal radii perihelion
g	4600000, t, 0, 1.58)	4600000)	
Curve	Curve(0.63cos(t),	i:(0.63cos(t),	motive energy curve
i	0.63sin(t) + 1.59, t, -4, 4)	0.63sin(t) + 1.59)	perihelion N
Curve	Curve(0.63cos(t) + 1.59,	$j:(0.63\cos(t) + 1.59, 0.63\sin(t) + 0.37)$	motive energy curve
j	0.63sin(t) + 0.37, t, -4, 4)		perihelion
Curve k	Curve(t, 1, t, -0.7, 2.2)	k:(t, 1)	curved space directrix
Curve	Curve(1.45cos(t) + 2.41,	h:(1.45cos(t) + 2.41,	low energy curve
h	1.45sin(t) - 0.45, t, -4, 4)	1.45sin(t) - 0.45)	aphelion.
Curve	Curve(1.45cos(t),	n:(1.45cos(t),	orbit limit aphelion
n	1.45sin(t) - 2.45, t, -3, 3)	1.45sin(t) - 2.45)	

Curve c	Curve(1.59, t, t, -0.5, 0.5)	c:(1.59, t)	abscissa ID limit perihelion
Curve e	Curve(t, 0.37, t, 1.3, 1.9)	e:(t, 0.37)	(f(r)) perihelion
Curve	Curve(2.41, t, t, -0.6,	d:(2.41, t)	abscissa ID limit
d	0.55)		aphelion
Curve	Curve(2.41cos(t),	m:(2.41cos(t),	orbit curve aphelion
m	2.41sin(t), t, -3, 3)	2.41sin(t))	
Curve o	Curve(1cos(t), 1.59sin(t), t, -3, 3)	o:(1cos(t), 1.59sin(t))	elliptical mechanical energy curve perihelion
Curve	Curve(1.59cos(t),	l:(1.59cos(t),	orbit curve
l	1.59sin(t), t, -2, 2)	1.59sin(t))	perihelion
Curve	Curve(0.63cos(t),	p:(0.63cos(t),	motive energy curve
p	0.63sin(t) - 1.59, t, -0.1, 2)	0.63sin(t) - 1.59)	parhelion S

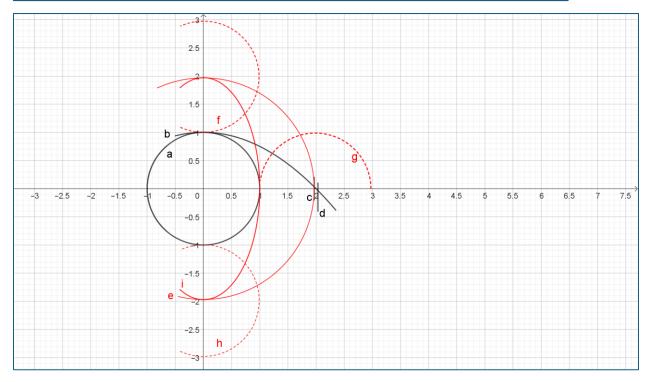
Created with GeoGebra


I've taken the focal radius curve(g), connected with period time curve position perihelion (r, f(r)) as the perihelion energy limit for Mercury, closest approach to the Sun. After subtracting unity curve one, (M_1) potential, the remaining space is the motive energy curve of Mercury@perihelion.

I move two motive curves, one to the north and one to the south on the spin axis of (M_1) . They both have energy and mass (KE) swallowed by (M_1) . Can these be missing space-time of predicted orbit curve perihelion?

The elliptical mechanical energy curve(o) for orbit limit perihelion fits well within the limiting curve(l), period curve for mercury perihelion.

VENUS


	central relative position		square space	curved space
	perihelion		107 480 000	1.98651
	aphelion		108 940 000	2.01349
	average		108 210 000	2
ston #1 compose data field	ASI		54 105 000	1
step #1 compose data field.	AVERAGE V			35.02
	f (π)		727 538	0.0134544
	f (α)		-732 462	-0.0135456
	focal radius (π)		107 482 462	1.98655
	focal radius (α)		108 942 462	2.01355

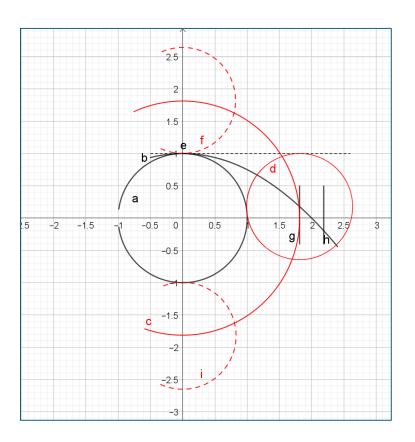
Perfect spacetime square and orbit, cannot evaluate.

EARTH

	central relative position	square space	curved space
	perihelion	147 090 000	1.96644
	aphelion	152 100 000	2.03342
	average	149 600 000	2
ston #1 compose data field	ASI	74 797 500	1
step #1 compose data field.	AVERAGE V		35.02
	f (π)	2 484 030	0.0332784
	f (α)	-2525970	-0.0336992
	average v	29.78	29.78
	focal radius (π)	147 115 970	1.98655
	focal radius (α)	152 125 970	2.01355

elliptical ecurves earth, energy limit perihelion

ΑLΣΧΑΝDΣR


	No.	Name	Description	Value	Caption
1					

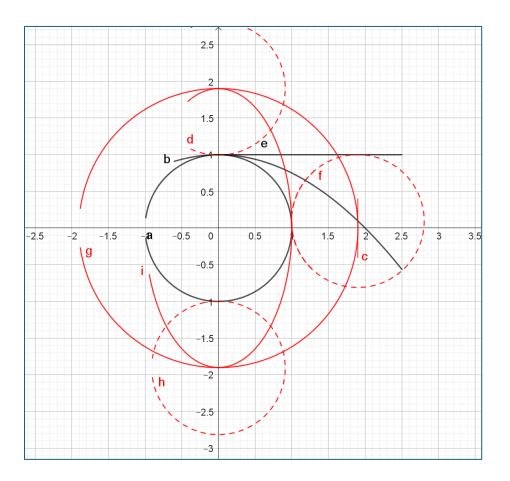
	Curve			
1	a	Curve(cos(t), sin(t), t, -4, 4)	a:(cos(t), sin(t))	
2	Curve b	Curve(t, t ² / -4 + 1, t, -0.5, 2.35)	b: $(t, t^2 / -4 + 1)$	
3	Curve c	Curve(1.97, t, t, -0.2, 0.2)	c:(1.97, t)	
4	Curve d	Curve(2.03, t, t, -0.4, 0.1)	d :(2.03, t)	
5	Curve f	Curve(0.99cos(t), 0.99sin(t) + 1.99, t, -2, 2)	f:(0.99cos(t), 0.99sin(t) + 1.99)	
6	Curve g	Curve(0.99cos(t) + 1.99, 0.99sin(t), t, 0, 3)	g:(0.99cos(t) + 1.99, 0.99sin(t))	
7	Curve h	Curve(0.99cos(t), 0.99sin(t) - 1.99, t, -2, 2)	h:(0.99cos(t), 0.99sin(t) - 1.99)	
8	Curve e	Curve(1.97cos(t), 1.97sin(t), t, - 1.8, 2)	e:(1.97cos(t), 1.97sin(t))	
9	Curve i	Curve(1cos(t), 1.97sin(t), t, -2, 2)	i:(1cos(t), 1.97sin(t))	

Created with GeoGebra

MARS

	central relative position	square space	curved space
	perihelion	206 620 000	1.81305
	aphelion	249 230 000	2.18695
	average	227 925 000	2
step #1 compose data field.	ASI	113 962 500	1
step #1 compose data netd.	AVERAGE V		24.13
	f (π)	20 309 300	0.178211
	f (α)	- 22 300 700	-0.195685
	average v	24.13	24.13
	focal radius (π)	207 615 700	1.82179
	focal radius (α)	250 225 700	2.19569

ellip ecurves mars


ΑLΣΧΑΝDΣR

No.	Name	Description	Value	Caption
1	Curve a	Curve(cos(t), sin(t), t, -3, 3)	$a:(\cos(t),\sin(t))$	
2	Curve b	Curve(t, t ² / -4 + 1, t, -0.5, 2.4)	b: $(t, t^2 / -4 + 1)$	
3	Curve e	Curve(t, 1, t, -0.5, 2.6)	e:(t, 1)	
4	Curve f	Curve(0.82cos(t), 0.82sin(t) + 1.82, t, -2, 2)	f:(0.82cos(t), 0.82sin(t) + 1.82)	
5	Curve g	Curve(1.81, t, t, -0.4, 0.5)	g:(1.81, t)	
6	Curve h	Curve(2.19, t, t, -0.4, 0.5)	h:(2.19, t)	
7	Curve c	Curve(1.81cos(t), 1.81sin(t), t, - 1.9, 2)	c:(1.81cos(t), 1.81sin(t))	
8	Curve d	Curve(0.82cos(t) + 1.81, 0.82sin(t) + 0.18, t, -4, 4)	$\frac{d:(0.82\cos(t) + 1.81,}{0.82\sin(t) + 0.18)}$	
9	Curve i	Curve(0.83cos(t), 0.83sin(t) - 1.82, t, -2, 2)	i:(0.83cos(t), 0.83sin(t) - 1.82)	

Created with GeoGebra

JUPITER: step #1 compose data field.

central relative position	square space	curved space
perihelion	740 520 000	1.90227
aphelion	816 620 000	2.09774
average	778 570 000	2
ASI	389 285 000	1
AVERAGE V		13.07
f (π)	37 120 200	0.095355
$f(\alpha)$	- 38 979 800	-0.100131
average v	13.07	
focal radius (π)	741 449 800	1.90465
focal radius (α)	817 549 800	2.10013

elliptical ME Jupiter

ΑLΣΧΑΝDΣR

No.	Name	Description	Value	Caption
1	Curve a	Curve(cos(t), sin(t), t, -3, 3)	$a:(\cos(t),\sin(t))$	
2	Curve b	Curve(t, t ² / -4 + 1, t, -0.6, 2.5)	b: $(t, t^2 / -4 + 1)$	
3	Curve c	Curve(1.9, t, t, -0.4, 0.4)	c:(1.9, t)	
4	Curve e	Curve(t, 1, t, 0, 2.5)	e:(t, 1)	
5	Curve f	Curve(0.91cos(t) + 1.9, 0.91sin(t) + 0.1, t, -4, 4)	$f:(0.91\cos(t) + 1.9, \\ 0.91\sin(t) + 0.1)$	
6	Curve d	Curve(0.91cos(t), 0.91sin(t) + 1.91, t, -2, 2)	d:(0.91cos(t), 0.91sin(t) + 1.91)	
7	Curve g	Curve(1.9cos(t), 1.9sin(t), t, -3, 3)	g:(1.9cos(t), 1.9sin(t))	
8	Curve h	Curve(0.91cos(t), 0.91sin(t) - 1.91, t, -3, 3)	h:(0.91cos(t), 0.91sin(t) - 1.91)	
9	Curve i	Curve(1cos(t), 1.9sin(t), t, -2.8, 2)	i:(1cos(t), 1.9sin(t))	

Created with **GeoGebra**

QED: ALXANDER; CEO SAND BOX GEOMETRY LLC