
Parametric geometry construction for $(\sqrt[0]{9})$. ALXXANDER

Figure 4: parametric geometry $(9^{\frac{1}{0}})$.

MECHANICAL ENERGY CURVES OF INTEGER 9 @ INDEX(0). ALΣXANDΣR

Name	Value	Caption
Curve a	(4.5cos(t), 4.5sin(t))	Independent curve (AKA discovery curve).
Curve b	(t, t ² / -18 + 4.5)	Dependent curve (AKA definition curve).
Curve j	(t, t ^o / -2 + 9 / 2)	$(parametric \sqrt[9]{9})$. Rest energy of Central Force Field. Limits range of Surface Acceleration on Curve (a) , home to Galileo's Incline Plane Kinematics and latus rectum solution curve $(9^{\frac{1}{2}})$
Curve i	(t, t ¹ / -2 + 9 / 2)	curved space registration: $Parametric \sqrt[1]{9}$ with Central Force Spin.

Curve f	$(t, t^2 / -2 + 9 / 2)$	(–) solution curve. $(parametric \sqrt[2]{9})$
Curve c	(1/9, t)	Curvature value displacement $(r = 9)$.
		Best fit parabola linking Sir Isaac Newton's
		displacement radius (9) with curvature value $\left(\frac{1}{9}\right)$ in
Curve e		potential. (inverse square connection)
		Best fit parabola connecting Curved Space
		Mechanical Potential as motive energy on the period
Curve h		time curve (b) . $(9^2 \leftrightarrow 9^{\frac{1}{2}})$
		$(domain1, range4)$ +endpoint $(9^{\frac{1}{2}})$ solution curve
Point B	B = (1, 4)	latus rectum. Joins: $(\sqrt[9]{9}), (\sqrt[1]{9}), (\sqrt[2]{9})$
		$(domain \sqrt[2]{9}, range 4)$. Intercept of $(\sqrt[6]{9})$ with
Point C	C = (3, 4)	period time curve (b) @ $(\sqrt[2]{9},4)$
		Galileo's S&T1, our first spacetime square.
		Coordinates of (D) map 3seconds Earth Uniform
		Acceleration field with: $(3^2 spacetime tiles)$.
		One tile of spacetime Earth: $(16ft., 1s)$.
		Freefall spacetime: $(9s * (16f) = 144ft drop)$.
Point D	D = (3, 3)	Terminal velocity: $(6s * (16ft) = 96ft/s)$.

Created with GeoGebra