This exploratory is a Crossover from Big Space of the Classics into nuclear level Quantum Space.

CSDA Curved space analytics on Classic Big Space and Quantum nuclear constructions.

October 18, 2022

The unit circle boundary separating our two infinities is a curved space limit denying Sir Isaac Newton Big Space metered displacement integer(s), regression into Quantum Space Micro Infinity

INTENTIONS

There exists a disconnect in our human knowledge base. Big Space of Classic Physics, and the Quantum Small studies of the two fields we live with, gravity and nuclear. I intend to bridge this ever-widening gap. Their mathematical deportment speaks of two different character. Let Big Space of Classic Physics be raw and visible. The other, nuclear Quantum Small, is not quite as discernible, having violent consequences when disturbed. To wit: Exploding H gas in chem-lab or nuclear happenstance. I intend to use number line integers as Sir Isaac Newton's displacement radii working ($M_{1} M_{2}$) Gfield orbit space. Indulge a fall experience across Gfield orbit space curves toward Galileo’s S\&T1 surface curve of (M_{1}) till captured by his Uniform Acceleration discovery. Then, using parametric geometry, manufacture a crossing of unit one boundary, the separator of our infinities, big space-macro and small space-micro, to the place in time and space where being is an inverse experience.

Pages 9, words 718.
Answer to the abstract question; "how far can regression curves of macro space fall?"

Figure 1: fall path from space curve(3) to space curve(2). From average energy diameter of radius(3), move along period time curve (b) to (B_{3}), follow rest energy curve (j) to spin axis range(1) where discovery (l) period time curve (p) latus rectum chord, is placed average energy diameter of space curve(2). Discovery curve (l) is $\left(M_{1}\right)$ surface acceleration curve, aka space curve(1).
Point (C) of crossover triangle(s) holds the answer. It seems we cannot travel any further than rest energy of a central force G-field space curve(3), a direct connect with surface acceleration curve (l) of $\left(M_{1}\right)$. Curve (l), aka space curve (1), the discovery curve for period time curve (p) producing motive energy for displacement space curve(2) of CSDA curved space analytics.

I find crossovers serve as a means to slide 'down' mechanical energy influence of sequential orbit curves, specifically average energy, average diameter orbit curve(s) of Sir Isaac Newton's S\&T(2). I use a source primitive S\&T(2) CSDA for ($M_{1} M_{2}$) curved space analytics. I assign number line counting integers to space
curves out from the central force \boldsymbol{F}. Surface acceleration curve of $\left(M_{1}\right)$ is CSDA space curve(1)

As space curve(1) belongs to our star, this makes space curve(2) Mercury and space curve(3) Venus. Curved space arithmetic, a simple thing, but gotta keep the arithmetic straight.

Crossover triangles are relative with two specific average energy/diameter displacement space curve(s). I provide three initial/start examples of three specific space curves 7,5 , and 3 . Each construction will contain a discovery curve initial, a period of time curve of discovery initial, rest energy of initial and discovery final and its period time curve using rest energy of initial. All crossover triangles are similar relative with each other except for placement in space with respect to spin axis of \mathbf{F}, differ only with changing parametric ME of the connected system orbit curves they link.

Figure 2: Crossover curved space parametrics. all begin with abscissa ID 1, Galileo's spacetime tile.
$\operatorname{Point}(\mathrm{A}):\left(1,\left(\frac{t^{0}}{-2}+\frac{\text { disp }}{2}\right)\right)$: links every crossover with Galileo's $1^{\text {st }}$ space-time tile.
Point(B): $\left(\sqrt[2]{\operatorname{disp}},\left(\frac{t^{0}}{-2}+\frac{\operatorname{disp}}{2}\right)\right)$: connects every crossover with ME of Sir Isaac Newton's S\&T2.

Point(C): $\left(\sqrt[2]{\operatorname{disp}},\left(\frac{\operatorname{disp}}{2}+\frac{\sqrt{d i s p}}{2}\right)\right)$: (reference fig(1)). Point (C), lies on the hypotenuse of the crossover. The hypotenuse links Galileo first second tile with registration of space curve (n) and central force spin. Point (C) connects inverse square motive energy given $\left(M_{2}\right)$ via potential curve of $\left(M_{1}\right)$ found on the domain of \mathbf{F}. Curve (h) links displacement $\left(r^{2}\right)$ with $(\sqrt[2]{r})$, Sir Isaac Newton's inverse square connection, loading $\left(M_{1}\right)$ potential curve (f) onto period time curve (b). Curve (e) is the inverse connection of radius and radius of curvature.

Space curve(7) to space curve(6).

Figure 3: Figure 4: fall path from space curve(7) to space curve(6). From average energy diameter of radius(7), move along period time curve (b) to (B), follow rest energy curve (j) to spin axis range(3) where discovery (k) period time curve (l) lattus rectum is placed as average energy diameter of space curve(6).

CSDA curve space construction(s) can only hold parametric geography of the initial system. Final space curve geography exists as ghost parametrics. i color these constructions red.

Space curve(5) to space curve(4)

Figure 3: fall path from space curve(5) to space curve(4). From average energy diameter of radius(5), move along period time curve (b) to point (B), follow rest energy curve (j) to spin axis range (2) where discovery (k) period time curve (o) lattus rectum is placed as average energy diameter of space curve(4).

Figure 4: fall path from space curve(3) to space curve(2). From average energy diameter of radius(3), move along period time curve (b) to point $\left(B_{3}\right)$, follow rest energy curve (j) to spin axis range (1) where discovery (l) period time curve (p) lattus rectum is placed as average energy diameter of space curve(2).

I post changing ordinates of point (C) from space curve(1) to space curve(100). Perfect squares are interesting, Cool stuff.

Hello, allow my imagination to play. My imagination is not crazy, this is the stuff we make movies about. These falling curves I call regression curves. There is only one way, a fall towards the center of our star, a place we really don't want to go. Aggression curves, on the other hand, from our star out to any space curve of consideration, we'll take an awful lot of energy to do so. Someone will figure it out someday. Today, we call it warp speed.

Next up, goin' nuclear; quantum small.
ALEXANDIR; CEO SAND BOX GEOMETRY LLC

Readings from the SandBox

1	$\frac{1}{2}-\frac{\sqrt{1}}{2}$	0	13	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{13}{2}-\frac{\sqrt{13}}{2}$
2	$\frac{2}{2}-\frac{\sqrt{2}}{2}$	1- $\frac{1}{\sqrt{2}}$	14	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$7-\sqrt{\frac{7}{2}}$
3	$\frac{3}{2}-\frac{\sqrt{3}}{2}$	$\frac{3}{2}-\frac{\sqrt{3}}{2}$	15	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{15}{2}-\frac{\sqrt{15}}{2}$
4	$\frac{4}{2}-\frac{\sqrt{4}}{2}$	1	16	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	6
5	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{5}{2}-\frac{\sqrt{5}}{2}$	17	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{17}{2}-\frac{\sqrt{17}}{2}$
6	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$3-\sqrt{\frac{3}{2}}$	18	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$9-\frac{3}{\sqrt{2}}$
7	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{7}{2}-\frac{\sqrt{7}}{2}$	19	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{19}{2}-\frac{\sqrt{19}}{2}$
8	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$4-\sqrt{2}$	20	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$10-\sqrt{5}$
9	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	3	21	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{21}{2}-\frac{\sqrt{21}}{2}$
10	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$5-\sqrt{\frac{5}{2}}$	22	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$11-\sqrt{\frac{11}{2}}$
11	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{11}{2}-\frac{\sqrt{11}}{2}$	23	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{23}{2}-\frac{\sqrt{23}}{2}$
12	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$6-\sqrt{3}$	24	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$12-\sqrt{6}$
			25	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	10

Readings from the SandBox

26	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$13-\sqrt{\frac{13}{2}}$	39	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{39}{2}-\frac{\sqrt{39}}{2}$
27	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{27}{2}-\frac{3 \sqrt{3}}{2}$	40	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$20-\sqrt{10}$
28	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$14-\sqrt{7}$	41	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{41}{2}-\frac{\sqrt{41}}{2}$
29	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{29}{2}-\frac{\sqrt{29}}{2}$	42	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$21-\sqrt{\frac{21}{2}}$
30	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$15-\sqrt{\frac{15}{2}}$	43	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{43}{2}-\frac{\sqrt{43}}{2}$
31	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{31}{2}-\frac{\sqrt{31}}{2}$	44	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$22-\sqrt{11}$
32	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	16-2 $\sqrt{2}$	45	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{45}{2}-\frac{3 \sqrt{5}}{2}$
33	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{33}{2}-\frac{\sqrt{33}}{2}$	46	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$23-\sqrt{\frac{23}{2}}$
34	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$17-\sqrt{\frac{17}{2}}$	47	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{47}{2}-\frac{\sqrt{47}}{2}$
35	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{35}{2}-\frac{\sqrt{35}}{2}$	48	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	24-2 $\sqrt{3}$
36	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	15	49	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	21
37	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{37}{2}-\frac{\sqrt{37}}{2}$	50	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$25-\frac{5}{\sqrt{2}}$
38	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$19-\sqrt{\frac{19}{2}}$			

Readings from the SandBox

51	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{51}{2}-\frac{\sqrt{51}}{2}$
52	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$26-\sqrt{13}$
53	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{53}{2}-\frac{\sqrt{53}}{2}$
54	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$27-3 \sqrt{\frac{3}{2}}$
55	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{55}{2}-\frac{\sqrt{55}}{2}$
56	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$28-\sqrt{14}$
57	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{57}{2}-\frac{\sqrt{57}}{2}$
58	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$29-\sqrt{\frac{29}{2}}$
59	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{59}{2}-\frac{\sqrt{59}}{2}$
60	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$30-\sqrt{15}$
61	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{61}{2}-\frac{\sqrt{61}}{2}$
62	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$31-\sqrt{\frac{31}{2}}$
63	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{63}{2}-\frac{3 \sqrt{7}}{2}$

64	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	28
65	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{65}{2}-\frac{\sqrt{65}}{2}$
66	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$33-\sqrt{\frac{33}{2}}$
67	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{67}{2}-\frac{\sqrt{67}}{2}$
68	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$34-\sqrt{17}$
69	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{69}{2}-\frac{\sqrt{69}}{2}$
70	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$35-\sqrt{\frac{35}{2}}$
71	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$35-\sqrt{\frac{35}{2}}$
72	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$36-3 \sqrt{2}$
73	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{73}{2}-\frac{\sqrt{73}}{2}$
74	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$37-\sqrt{\frac{37}{2}}$
75	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{75}{2}-\frac{5 \sqrt{3}}{2}$

Hello

Readings from the SandBox

76	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$38-\sqrt{19}$	89	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{89}{2}-\frac{\sqrt{89}}{2}$
77	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{77}{2}-\frac{\sqrt{77}}{2}$	90	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	45-3 $\sqrt{\frac{5}{2}}$
78	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$39-\sqrt{\frac{39}{2}}$	91	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{91}{2}-\frac{\sqrt{91}}{2}$
79	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{79}{2}-\frac{\sqrt{79}}{2}$	92	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$46-\sqrt{23}$
80	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	40-2 $\sqrt{5}$	93	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{93}{2}-\frac{\sqrt{93}}{2}$
81	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	36	94	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$47-\sqrt{\frac{47}{2}}$
82	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$41-\sqrt{\frac{41}{2}}$	95	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{95}{2}-\frac{\sqrt{95}}{2}$
83	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{83}{2}-\frac{\sqrt{83}}{2}$	96	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	48-2 $\sqrt{6}$
84	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$42-\sqrt{21}$	97	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{97}{2}-\frac{\sqrt{97}}{2}$
85	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{85}{2}-\frac{\sqrt{85}}{2}$	98	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$49-\frac{7}{\sqrt{2}}$
86	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$43-\sqrt{\frac{43}{2}}$	99	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{99}{2}-\frac{3 \sqrt{11}}{2}$
87	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$\frac{87}{2}-\frac{\sqrt{87}}{2}$	100	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	45
88	$\frac{n}{2}-\frac{\sqrt{n}}{2}$	$44-\sqrt{22}$	Hello		

