On Mechanical Energy Registration of Central Force index(2) solution curve(s) imbued unto motive energy of Displacement Radicands in Square Space.

ALIXANDER; CEO SAND BOX GEOMETRY LLC

Curved space ME analytics using index(2) solution curves working number line integers as displacement radicand

Sunday, September 25, 2022
22:13

I have shown that only three indices are needed to construct S\&T2 Central Force ME Curves:

$$
(\sqrt[0]{n}, \sqrt[1]{n}, \sqrt[2]{n})
$$

I will show that registration by Central Force Curved Space Mechanical Energy of Sir Isaac Newton's displacement radicand integer(s), with respect to central force spin, is a cooperative endeavor by three index solution curves:

$$
\left(n^{\frac{1}{0}}, n^{\frac{1}{1}}, n^{\frac{1}{2}}\right)
$$

Constructing S\&T2 displacement and S\&T3 Z\# energy curve(s) geographic area of variable intensity control by a Central Force Field.

Happens in both Macro Infinity big space and Micro Infinity small space.

Pages 12; 1300 words.
first up will be square space displacement integer: (25) units from spin.
followed by nuclear assemblies: Oxygen; Z\#8

CSDA CLASSIFICATION: two constructions of definition

CSDA(2): Classic Big Space Happenings. Found in S\&T2

Central force meter of (Gravity-field) displacement require average diameter of ($M_{1} M_{2}$) system be embedded on the CSDA(2) latus rectum end to end.
(-)endpoint to +endpoint of system latus rectum summing (4p) where (p) is the initial focal radius captured by $\left(\frac{\pi}{2}\right)$ spin radius of $\left(M_{1}\right)$. When observed as a $1^{\text {st }}$ quadrant event there will be two period curves. (-)period curve from \mathbf{N} spin and $(+)$ period curve from \mathbf{S} spin.

CSDA2 Prime Mover latus rectum

All three solution curves:

$$
\left(n^{\frac{1}{0}}, n^{\frac{1}{1}}, n^{\frac{1}{2}}\right)
$$

Will connect@ $\left(n^{\frac{1}{2}}\right)$ latus rectum (+)endpoint when such a $1^{\text {st }}$ quad happening occurs and will register displacement with respect to spin, and with this linkage convert potential energy of $\left(M_{1}\right)$ into $\left(M_{2}\right)$ motive energy.

CSDA(3): Z\#, Quantum Space Happenings. Found in S\&T3

Quantum motion is not as perceivable as S\&T2. S\&T2 fields position(s) change with time. Quantum motion is felt and seen as heat energy shape change. An inanimate element atom shape is fixed. Has no means to generate energy to change perception of state. However, we can see solid morphed to liquid, liquid morphed to gas. These changes are perceived with time. And heat.

Take a block of steel. Set the block into a blast furnace pot. Before heat chaos of the furnace, the block is cool to touch. After heat chaos for seconds, the block radiates color of extreme heat. Eventually melting. Solid morphed to liquid.

How a quantum CSDA(3) tracks heat and change of state will be presented with S\&T3.

Readings from the SB

CSDA(2): Classic Big Space Happenings. Found in S\&T2:

Let range parameter of index(0) solution curve(j): be system rest energy, a limit of range; (no work).

$$
\left(\frac{t^{\text {index }}}{-2}+\frac{\text { radicand }}{2} / . \text { index } \rightarrow 0\right) \xrightarrow{\text { yields }}\left(-\frac{1}{2}+\frac{\text { radicand }}{2}\right) \xrightarrow{\text { yields }}(12) .
$$

Solution curve plot: range rest energy no domain.

$$
\operatorname{Plot}[(25 / 2),\{t,-1,25\}]
$$

Readings from the SB

Let index(1) solution curve(i) be: registration of $\left(M_{2}\right)$ displacement with spin. $\frac{t^{\text {index }}}{-2}+\frac{\text { radicand }}{2} /$. index $\rightarrow 1 \xrightarrow{\text { yields }}\left(\frac{\text { radicand }}{2}-\frac{t}{2}\right)$. Solution curve plot:

Let index(2) solution curve(f) be: curved space $\left(25^{\frac{1}{2}}\right)$ resident curved space happenings linking integer(25) with $\left(25^{2}\right)$ happening in square space.
$\frac{t^{\text {index }}}{-2}+\frac{\text { radicand }}{2} /$. index $\rightarrow 2 \xrightarrow{\text { yields }}\left(\frac{\text { radicand }}{2}-\frac{t^{2}}{2}\right):$ plot

My conclusion:
Rest energy $\left(n^{\frac{1}{0}}\right)+$ linear registration $\left(n^{\frac{1}{1}}\right)+$ work energy $\left(n^{\frac{1}{2}}\right)=$ motive energy of $\left(M_{2}\right)$ tracked on period time curve(b).

Exploring QUANTUM CSDA(3): found in S\&T3.

The following analytics concerns Oxygen; Z\#8.

Readings from the SB
oxygen registration

ALIXANDER

Name	Description	Caption
Text text4		Oxygen, Z\#8
Curve a	$\begin{aligned} & \text { Curve }(8 \cos (t), 8 \sin (t), t, \\ & -5,5) \end{aligned}$	Z\#8 electron cloud
Curve b	$\begin{aligned} & \text { Curve }\left(\mathrm{t}, \mathrm{t}^{2} /-32+8, \mathrm{t},-\right. \\ & 5,16.25) \end{aligned}$	CSDA1 definition curve. Has no presence in quantum space except as an inverse.
Curve d	Curve(t, $\mathrm{t}^{2} /-8+8, \mathrm{t},-8$, 8)	Binding energy parabola, holds atom shape binding ecloud with nucleus.
Curve m	Curve(t, 6, t, -4, 4)	Binding energy parabola latus rectum defines slope (-1) space.
Curve c	$\begin{aligned} & \text { Curve(t, } \mathrm{t}^{1} /-2+16 / 2 \\ & \mathrm{t}, 0,16) \end{aligned}$	(-)Linear registration of G-field hook for nuclear rotation assemblies.
Curve e	$\begin{aligned} & \text { Curve(t, } \mathrm{t}^{1} / 2-8, \mathrm{t}, 0, \\ & 16) \end{aligned}$	(+)Linear registration of G-field hook for nuclear rotation assemblies.

Created with GeoGebra

Readings from the SB

CSDA(3): found in S\&T3. Singular nuclear construction.

quantum space ecurves

ALEXANDER

Name	Description	Caption
Curve Curve $(8 \cos (\mathrm{t}), 8 \sin (\mathrm{t}), \mathrm{t},-5$, a Electron cloud. 5)	Curve $\left(\mathrm{t}, \mathrm{t}^{2} /-32+8, \mathrm{t},-6\right.$, b	$18)$

Readings from the SB

Curve C	Curve(t, $\left.\mathrm{t}^{2} /-8+8, \mathrm{t},-8,8\right)$	Binding energy parabola
Curve e	Curve(t, 6, t, -4, 4)	Binding eparabola latus rectum
Curve f	$\begin{aligned} & \text { Curve }(2 \cos (t), 2 \sin (t)+6, t, \\ & -5,5) \end{aligned}$	Binding eparabola neighborhood(p)
Curve g	Curve $(2 \cos (t), 2 \sin (t), t,-5$, 5)	Nucleus, (8)proton (8\}neutron
Curve h	$\begin{aligned} & \text { Curve(sqrt(2) } \cos (t), \text { sqrt(2) } \\ & \sin (t), t,-5,5) \end{aligned}$	Nuclear binding energy curve. Holds nucleus together
Curve i	Curve(t, t + 2, t, -1, 6)	Tan normal of binding eparabola (-1) energy tangent @ +latus rectum end point.

Created with GeoGebra

Readings from the SB

CSDA(3): found in S\&T3. Two atom bond plane nuclear construction.
Two atom connects are always along spin.

two Z\#8@quantum space

ALEXANDER

Name	Description	Caption
Curve a	Curve $(8 \cos (\mathrm{t}), 8 \sin (\mathrm{t}), \mathrm{t},-5,5)$	Z\#8 electron cloud
Curve b	Curve $\left(\mathrm{t}, \mathrm{t}^{2} /-8+8, \mathrm{t},-8,8\right)$	Binding eparabola Z\#8

Readings from the SB

Curve c	Curve(2cos(t), $2 \sin (\mathrm{t})+6, \mathrm{t},-5,5)$	Neighborhood(p) binding eparabola Z\#8
Curve d	Curve(t, 6, t, -4, 4)	Latus rectum binding eparabola Z\#8
Curve g	Curve (2cos $(\mathrm{t}), 2 \sin (\mathrm{t}), \mathrm{t},-5,5)$	Nucleus Z\#8
Curve h	$\begin{aligned} & \text { Curve(sqrt(2) / } 1 \cos (t), \text { sqrt(2) / } 1 \\ & \sin (t), t,-5,5) \end{aligned}$	Nuclear binding energy, holds nucleus together.
Curve j	Curve(t, sqrt(64 + t²), t, -6, 16)	Shaping hyperbola, holds atom spherical.
$\begin{aligned} & \text { Point } \\ & \text { A } \end{aligned}$		Center of bond ring
Curve k	$\begin{aligned} & \text { Curve(sqrt(2) / } 1 \cos (t)+15, \\ & \operatorname{sqrt}(2) / 1 \sin (t)+17, t,-5,5) \end{aligned}$	Shape of bond ring
Curve I	Curve(t, 17, t, 11, 18)	Spin axis bond plane
Curve m	Curve(15, t, t, 10, 14)	Domain limit, rotation bond
Curve p	Curve(16, t, t, 1, 5)	Ghook for 3atom rotation assembly
Curve i	Curve(t, t+2, t, -4, 16)	Binding eparabola (+)tan normal to binding eparabola (-) etangent.
Curve q	Curve(t, $10-\mathrm{t}, \mathrm{t}, 1,6)$	Binding eparabola (-)slope(1) energy tangent

Created with GeoGebra

COPYRIGHT ORIGINAL GEOMETRY BY

Sand Box Geometry LLC, a company dedicated to utility of Ancient Greek Geometry in pursuing exploration and discovery of Central Force Field Curves.

Using computer parametric geometry code to construct the focus of an Apollonian parabola section within a right cone.

"It is remarkable that the directrix does not appear at all in Apollonius great treatise on conics. The focal properties of the central conics are given by Apollonius, but the foci are obtained in a different way, without any reference to the directrix; the focus of the parabola does not appear at all... Sir Thomas Heath: "A HISTORY OF GREEK MATHEMATICS" page 119, book II.

Utility of a Unit Circle and Construct Function Unit Parabola may not be used without written permission of my publishing company Sand Box Geometry LLC Alexander; CEO and copyright owner.alexander@sandboxgeometry.com

The computer is my sandbox, the unit circle my compass, and the focal radius of the unit parabola my straight edge.

ALIXAND Σ; CEO SAND BOX GEOMETRY LLC

CAGE FREE THINKIN' FROM THE SAND BOX

The square space hypotenuse of Pythagoras is the secant connecting ($\pi / 2$) spin radius $(0,1)$ with accretion point $(2,0)$. I will use the curved space hypotenuse, also connecting spin radius ($\pi / 2$) with accretion point $(2,0)$, to analyze g-field mechanical energy curves.

Figure 2: CSDA demonstration of a curved space hypotenuse and a square space hypotenuse together.

We have two curved space hypotenuses because the gravity field is a symmetrical central force, and will have an energy curve at the \mathbf{N} pole and one at the \mathbf{S} pole of spin; just as a bar magnet. When exploring changing acceleration energy curves of M_{2} orbits, we will use the N curve as our planet group approaches high energy perihelion on the north time/energy curve.

ALIXAND Σ R

