Galileo and the squaring of time
Presuppose Galileo and Descartes collaborated on The Art of Falling. Let's get these two guys together. 15th Century Algebra and beginning Parametric Geometry Analysis. Galileo proffered unit time as range, making unit space as domain arbitrary. Galileo and Descartes, realizing domain fall space, not of fixed meter, needed accommodate changing displacement per units of range (time) presented a challenge. Their solution was to construct algebraic tiles to build an explanatory Euclidean Uniform Acceleration SpaceTime Frame. SpaceTime tiles, in a Descartes 1st Quad happening, would possess space as Central Force domain and range as time. I will use the interrupters Galileo placed on his incline plane as event time, each interruption a 1s range event. We only need two seconds of roll to construct their 1st second Euclidean free fall tile for our Earth's surface acceleration curve enabling a Euclidean SpaceTime frame mapping free fall events for Gravity Field Earth.
Galileo; 02/15/1564 01/08/1642
Descartes: 03/31/1596; 02/11/1560
A Sand Box Geometry Philosophical Exploratory on stuff BC (Before Computers)
ALEXANDER (Pi Day) 1944
Central Force Fields and Relative time. Now is now for everyone. Even those having experience on the other side of Creation, their time is my time. We all exist with God's time. Birth, life, and death.
Can't be changed. AL $\Sigma X A N D \Sigma R$

If we select the timeline Galileo as that point in human history where we recognized our Earth is not the center of Creation; we begin with Space and Time Square1 (S\&T1). Let me suggest two more S\&T's as significant milestones of our human knowledge base. (S\&T2) would be Sir Isaac Newton and his Universal Law of Gravity. Followed by (S\&T3); late 19 th
Century and early $20^{\text {th }}$ Century collective development of Quantum Thermodynamics. What happens when atoms sweat or get real, real cold.

Galileo's S\&T1 provides the source primitive for all S\&T space and time squares to come. S\&T squares are born in Descartes $1^{\text {st }}$ quadrant. A $1^{\text {st }}$ quad construction will provide positive natural numbers (counting integers) to construct a Uniform Acceleration time square. This allows utility of Euclidean definition of a square; congruent sides giving a one-to-one correspondence, one unit time as S\&T range with one unit space as S\&T domain.

S\&T Uniform Acceleration squares are a parametric geometry function and do not define points in space as a function range and domain, but meter intensity of central force accelerations by distributing time as seconds removed from the surface curve of $M_{1}$; making 'how-high' a metered effort using time. Inversed Square Law meter of field intensity makes each spacetime tile, of the Euclidean SpaceTime Frame, relative with the $1^{\text {st }}$ second experience of the field from which the $1^{\text {st }}$ unit SpaceTime Tile is derived.

## 1st second free fall for planet Earth. Galileos $1^{\text {st }}$ Sec Tile


(j) is not a point located at $(1,1)$ on a Cartesian Plane, but position in central force field space of $M_{1}$. In fact ( $j$ ) is 1 second removed from surface acceleration curve of $\mathbf{F}$.

If this S\&T Square happened to be $1^{\text {st }}$ second free fall experiment for our Earth, 1 unit of free fall space would be 16 ft . Cartesian Coordinate definition for a Uniform Acceleration $1^{\text {st }}$ second S\&T tile for our Earth would be:
(one unit space16ft. (domain), one unit time1s (range)) (16feet, 1 second)

We know Imperial meter of Acceleration for Earth to be ( $32 \mathrm{ft} / \mathrm{s}^{2}$ ); a velocity vector across Is of space. Distance moved in that Is of space is an analytic geometry average.

$$
\text { Initial }=0 \text { and final }=32 \mathrm{ft} .\left(\frac{32 f t}{2}=16 \mathrm{ft}\right) .
$$



## PARAMETRIC GEOMETRY of 3 SPACETIME SQUARES of HUMAN EXPERIENCE

S\&T1: ( j ) is free fall corner position in G-field acceleration space. (two diagonals; 1 curved, 1 linear).
(Constant Acceleration; Galileo Galilei).
S\&T2: $(\pi)$ is perihelion (high e) and ( $\alpha$ ) is (low e) aphelion. (one curved diagonal).
(Changing Acceleration; Sir Isaac).
S\&T3 connects nuclear corner of space and time with ecloud corner of same space and time. S\&T3 has (one linear diagonal) connecting nuclear shaping forces of nucleus and ecloud with atom spin and rotation. S\&T3 explores Quantum level thermodynamic experience of Q (heat) and electromagnetic bond.

All three SpaceTime tiles share the same Central Force Spin and Rotation axis of F .

If we let S\&T2 be a two mass $\left(M_{1} M_{2}\right)$ system, stable sustainable dynamics of S\&T2 require $\left(M_{1}\right)$ to be an independent space curve, providing system potential. $\left(M_{2}\right)$ will be the system dependent space curve suffering orbit influence of $\left(M_{1}\right)$ en-perpetuity.

I say; if S\&T3 is the aggregate of Quantum small and S\&T2 is the aggregate of Classic Big, then S\&T1 is layered between S\&T2 and S\&T3 as the domain of living intellect.

The human experience of God's Intentions, our being, lies captured between S\&T3 and S\&T2 of God's Creation.

Galileo's S\&T1 provides the source primitive for all S\&T space and time squares to come. S\&T squares are born in Descartes $1^{\text {st }}$ quadrant. $1^{\text {st }}$ quad constructions provide positive natural numbers (counting integers) to construct a Euclidean Uniform Acceleration time square. This allows one-to-one correspondence utility of a square, congruent sides. Providing a one-unit time as S\&T range with one unit-space as S\&T domain.


## Beat1; Second1

His incline plane established domain(Space) and range(Time) as a collection metered with tempo. One unit time for each beat and meter of collated space per each happening. With Galileo's $1^{\text {st }}$ second tile for our Earth metered up, we can begin constructing a Euclidean Space\&Time Frame for S\&T1.

Our $1^{\text {st }}$ second tile. Galileo could not know the domain side of his $I^{\text {st }}$ sec tile ( 16 ft ). He still set the tempo of Curved Space Coordinates for our Earth's $\left.\right|^{\text {st }}$ sec tile $(16 f t, 1 s)$
with his ${ }^{\text {st }}$ interruption. We will use calculus and my CSDA analytical machine to capture those numbers.

Beat2; Second2
beat\#2 metered 3 more units of 'roll' space.


Hearing the beat of adjusted interruptions, he was able to divide increasing fall length into precise sectors of space and time.

$$
(\sec 1 \rightarrow \sec 2 \rightarrow \sec 3 \ldots)
$$

The $1^{\text {st }}$ second interruption is arbitrary. Second \#2 is comparative and carries a different length of space with respect to sec\#l. Second\#2 interrupter adjustment with second\#I provides matched tempo. He noticed change of meter between $\mathrm{s} \# \mathrm{I}$ and $\mathrm{s} \# 2$. $\mathrm{S} \# \mathrm{I}$ measured lunit space. $\mathrm{S} \# 2$ measured 3unit space.

Second \#3 continues the beat of spaceandtime, melding space with time for our $\left.\right|^{\text {st }}$ ever curved space Central Force Field inquiry.

BUP,S\&TIgeometry,S\&TI
TIME CURVE (C²)
@ 3 seconds, seriec (C) TILEs of time curve (C) wrap 5 more 1st Sec TILES around (time curve B) ${ }^{2}$


Once he had roll space per unit time, he only had to sum collated distance to meter cost of displacement space to rise above surface acceleration curve of Earth. Cost using S\&T Tiles:

$$
\text { (units time } \left.{ }^{2} *(1 \text { st } \sec \text { domain })\right) .
$$

If we are removed 3 seconds from surface acceleration curve Earth, square units of time to aquire analytical cost in tiles needed to gain 3 sec's height above surface curve Earth.

$$
\left(3^{2}=9, \text { tiles required }\right)
$$

Galileo's $3^{\text {rd }}$ interruption provide us with 5 more units of space for our Eucldean time frame.

Terminal velocity of free fall return energy: ( $\left.\right|^{\text {st }}$ derivative of $\left.(\text { time })^{2 *}\right|^{\text {st }} \mathrm{sec}$ domain)

$$
\begin{gathered}
\left(\text { height }: 3^{2} * 16=144 \text { feet }\right) \\
\left(\text { freefallv }=\frac{d t}{d s}\left(3^{2}\right)=6 * 16=96 f t / s\right)
\end{gathered}
$$



RUBBER BANDS of SPACE TIME

## ALIXAND 2 R

## CONSTRUCTION PROTOCOL <br> Created with GeoGebra

| Description | Value | Caption |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { Curve }(\cos (t), \sin (t), t,-5, \\ & \text { 5) } \end{aligned}$ | $a:(\cos (\mathrm{t}), \sin (\mathrm{t}))$ | second1 |
| Curve(t, $\left.\mathrm{t}^{2}, \mathrm{t}, 0,1\right)$ | $\mathrm{b}:\left(\mathrm{t}, \mathrm{t}^{2}\right)$ | Escape(e) to J |
| Curve( $\left.\mathrm{t}, \mathrm{t}^{2} / 2, \mathrm{t}, 0,2\right)$ | $\mathrm{c}:\left(\mathrm{t}, \mathrm{t}^{2} / 2\right)$ | Escape(e) to K |
| Curve(t, $\left.\mathrm{t}^{2} / 3, \mathrm{t}, 0,3\right)$ | $\mathrm{d}:\left(\mathrm{t}, \mathrm{t}^{2} / 3\right)$ | Escape(e) to L |
| Curve(t, $\mathrm{t}^{2} / 4, \mathrm{t}, 0,4$ ) | $\mathrm{e}:\left(\mathrm{t}, \mathrm{t}^{2} / 4\right)$ | Escape(e) to M |
| $\begin{aligned} & \text { Curve }(4 \cos (t), 4 \sin (t), \\ & t, 0.03,1.6) \end{aligned}$ | $\mathrm{n}:(4 \cos (\mathrm{t}), 4 \sin (\mathrm{t}))$ | Second4 |
| $\begin{aligned} & \text { Curve }(3 \cos (t), 3 \sin (t) \text {, } \\ & t, 0.03,1.6) \end{aligned}$ | $0:(3 \cos (\mathrm{t}), 3 \sin (\mathrm{t}))$ | Second3 |
| $\begin{aligned} & \text { Curve }(2 \cos (t) \\ & 2 \sin (t), t, 0.03,1.6) \end{aligned}$ | $\mathrm{p}:(2 \cos (\mathrm{t}), 2 \sin (\mathrm{t}))$ | Second2 |
| Point J | $J=(1,1)$ |  |
| Point K | $\mathrm{K}=(2,2)$ |  |
| Point L | $\mathrm{L}=(3,3)$ |  |
| Point M | $\mathrm{M}=(4,4)$ |  |


| Unit time | Tiles recorded | (¿DISPLACEMENT howfarr...?) <br> (units time ${ }^{2} *(1$ st sec domain) $)$ | $(v=2 * t * 1 s t)$ |
| :---: | :---: | :---: | :---: |
| 1 | 1 | $\left(1^{2} \times 16 f t\right)=16 \mathrm{ft}$ | $32 \mathrm{f} / \mathrm{s}$ |
| 2 | 3 | $\left(2^{2} \times 16 f t\right)=64 \mathrm{ft}$ | $64 \mathrm{f} / \mathrm{s}$ |
| 3 | 5 | $\left(3^{2} \times 16 f t\right)=144 \mathrm{ft}$ | $96 \mathrm{f} / \mathrm{s}$ |
| 4 | 7 | $\left(4^{2} \times 16 f t\right)=256 \mathrm{ft}$ | $128 \mathrm{f} / \mathrm{s}$ |
| 5 | 9 | $\left(5^{2} \times 16 f t\right)=400 \mathrm{ft}$ | $160 \mathrm{f} / \mathrm{s}$ |
| 6 | 11 | $\left(6^{2} \times 16 f t\right)=576 \mathrm{ft}$ | $192 \mathrm{f} / \mathrm{s}$ |
| 7 | 13 | $\left(7^{2} \times 16 f t\right)=784 \mathrm{ft}$ | $224 \mathrm{f} / \mathrm{s}$ |
| 8 | 15 | $\left(8^{2} \times 16 f t\right)=1024 \mathrm{ft}$ | $256 \mathrm{f} / \mathrm{s}$ |
| 9 | 17 | $\left(9^{2} \times 16 f \mathrm{f}\right)=1266 \mathrm{ft}$ | $288 \mathrm{f} / \mathrm{s}$ |
| 10 | 19 | $\left(10^{2} \times 16 f t\right)=1600 \mathrm{ft}$ | $320 \mathrm{f} / \mathrm{s}$ |

I find Kinematic equations confusing. Exploring Central Force ME, I use my CSDA machine to study two system events.happening with a closed Uniform Central Force Acceleration System.
Return energy, or terminal velocity, and height in terms of seconds removed from surface acceleration curves.

For displacement space above surface acceleration curves using Euclidean spacetime tiles:

Finding terminal velocity: if (units time ${ }^{2} *\left(1\right.$ st sec domain) ) defines height, $I$ use a $I^{\text {st }}$ derivative on this description of cost in tiles to find terminal velocity of return energy.

```
(2 }\times\mathrm{ unit time }\times1\mathrm{ st sec domain ) = terminalv
```



Sand Box Geometry LLC, a company dedicated to utility of Ancient Greek Geometry in pursuing exploration and discovery of Central Force Field Curves.

Using computer parametric geometry code to construct the focus of an Apollonian parabola section within a right cone.
"It is remarkable that the directrix does not appear at all in Apollonius great treatise on conics. The focal properties of the central conics are given by Apollonius, but the foci are obtained in a different way, without any reference to the directrix; the focus of the parabola does not appear at all... Sir Thomas Heath:

## "A HISTORY OF GREEK MATHEMATICS"

 page II9, book IIUtility of a Unit Circle and Construct Function Unit Parabola may not be used without written permission of my publishing company Sand Box Geometry LLC

## Alexander; CEO and copyright owner: <br> alexander@sandboxgeometry.com

The square space hypotenuse of Pythagoras is the secant connecting $(\pi / 2)$ spin radius $(0,1)$
with accretion point $(2,0)$. I will use the curved space hypotenuse, also connecting spin radius $(\pi / 2)$ with accretion point $(2,0)$, to analyze g-field energy curves when we explore changing acceleration phenomena.


We have two curved space hypotenuses because the gravity field is a symmetrical central force, and will have an energy curve at the $\mathbf{N}$ pole and one at the $\mathbf{S}$ pole of spin; just as a bar magnet.

When exploring changing acceleration energy curves of $M_{2}$ orbits, we will use the $N$ curve as our planet group approaches high energy perihelion on the north time/energy curve.

ALEXANDER

END and QED

