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Section 4; part 5 (Space Curves of Mars) 

ABSTRACT 

On The Heliocentric Circular Mechanical Energy Curves of 

Galileo  (32 pages, 3227 words) 

Galileo, born 7 years before and dying 12 years after Kepler, was well aware of Kepler’s solution 

concerning complexity about orbit parameters of our brother planet Mars. He refuted till his death, 

Keplerian elliptical planetary motion as much too complicated a curve. Though a heliocentric 

advocate as was Kepler, he held that natural curves of an orbit required simplicity and therefore 

must be circular. This paper explores Galileo’s concept of circular heliocentric planetary motion. I 

develop a standard gravity field M1M2 model using two plane geometry curves, a unit circle and its 

construct unit parabola, creating a plane geometry function needed to measure g-field central force 

energy curves. It turns out that g-field inverse square energy curves are spherical, can be 

constructed using NASA sourced observation parameters of our planet group and moons, build a 

standard model space and time square, once constructed provide analytics for orbit momentum 

around our sun and across the g-field time curve, all within reach of STEM HS math. Both orbit 

curves, his circles and Kepler’s ellipse, can be used to explain gravity field orbit mechanics, I invoke 

Sir Isaac Newton’s inverse square law to confirm Galilean perception. 

 

 

Your abstract has been successfully processed for the Baltimore, 

Maryland meeting. 

Your abstract number is: 1096-F1-592.  

You must refer to this number in any correspondence concerning this abstract. 

Once your abstract is approved, you will receive an e-mail message regarding 

the date, time, and location of your presentation approximately two weeks 

after the abstract deadline, or four weeks for annual meetings. 
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Slide 2 

BEGGINING CONCEPTS OF 

CENTRAL FORCE CAUSALITY 

Of 

PLANETARY MOTION 

ARE FOUND, PROVEN, AND ACCEPTED. 

 

 

 
JOHANN KEPLER: (Dec. 27, 1571 - Nov. 15, 1630) 

Lived 59 years 

 

 

GALILEO GALILIE: (FEB. 15, 1564 - JAN. 8, 1642) 

Lived 78 years Galileo (+11 years) 

 

Dialogue 

I’ve always been fascinated by space curves. Allow me to take you back to Galileo 

and Kepler, to the beginning exploratory of a g-field space curve known as Mars. 

Galileo and Kepler were contemporaries; Galileo lived 11 years longer than Kepler 

and was aware of Kepler’s solution concerning the enigma the orbit of Mars 

presented. He refuted Kepler’s argument defining the space curve Mars claiming 

‘the ellipse is much too complicated a curve to be used by God to move His 

planets; they move in circles’. I will show the perception of Galileo is also correct, 

maybe more so. 
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Slide 3 

 

Basic North Pole Solar Spin of our Planet Group. Yellow Vector represents the 

collective tangential orbit direction of our planet group about our sun. 

 

 

Dialogue: This is our current popular description of planetary motion, essentially 

unchanged since Galileo, Kepler, and Newton handed space curve philosophy off 

to we future generations. 

 

 

 

 

N
vector depicting

collective orbit

direction 
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Slide 4 

 Planet Level Accretion Zone and SPR (Solar Plane of Rotation). 

 

Dialogue: If we are to study the shape of g-field space curves, using planetary 

geometry, we need another perspective. I start with the solar equator as a plane 

of rotation holding the planetary accretion diameter of our system, assign the 

acronym SPR (Spherical Plane of Rotation), and we now view orbit  

 

motion as a function using the solar spin axis (as range) with respect to the plane 

of the solar equator (as domain). Mercury is the only planet held tightly by the 

solar equator; the rest of the group enjoys a distributive float on what is called 

the ecliptic. To find the space curves of Galileo controlling orbit motion, I use a 

 CURVED SPACE DIVISION ASSEMBLY (CSDA) 

 

N (solar cc spin)

Collective Orbit Motion M2

SPR

solar equator

M1
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Slide 5 

 

 

 

Dialogue: What is a curved space division assembly? Take the code for a unit 

circle and add the code for a unit parabola, and you have a curved space division 

assembly acronym CSDA. With central force F as center to the construction, we 

can use the unit circle as independent curve and the unit parabola as dependent 

curve creating a plane geometry function needed to study and explore the curved 

space geometry of gravity. 
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Slide 6: FINDING THE UNIT PARABOLA (UNITS OF (r)). 

 

 

Dialogue: What is a unit parabola? It’s an Apollonian section parabola reflected to 

the plane of the cone diameter where exists a unit circle holding the unit parabola 

vertex making the diameter (radius) = with unit parabola (p). 

 

 

  

unit parabola

Apollonian section parabola

r

p p

Cone diameter holding section vertex

Parabola vertex

3
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Slide 7 

 
Going from orbit radius of curvature to inverse square event curvature. 

 (𝐹𝑎𝑐𝑐 ∝ (𝐺 ×
𝑀1𝑀2

𝑟2 ) ∝ (𝑘 × (
1

𝑟
)

2

)
−1

) 

 

Slide dialogue continued on page 9. 
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Slide 7: Let’s consider some HS physics and math. 
 

Step 1: let the changing KE of curved orbit motion be a resultant of f (r), namely 

Sir Isaac Newton’s inverse square law, where (r) is the event radius of the system 

and varies KE inversely as the square of the central force separation. 

 
Step 2: using a 1st derivative on g-field KE curves brings a straight-line tangent 

vector charged with tangential velocity and orbit direction.   

 
Step 3: a second derivative operation on a natural orbit curves angular 

momentum is always normal to the velocity tangent and connects the event 

radius with the source of orbit accelerations. 

 
Step 4: we can now find the event curvature of Mars. Though different 

mathematical terms, curvature and radius of curvature, have equivalence in field 

mechanics profiling the same motion experience from a different perspective 

involving one and only one central force focus. 

 
Since M1 and M2 are constant as is (G), roll them into the constant of 

proportionality. We can now say the motive energy curve shaping planetary 

motion is proportional to: 

((𝑒𝑣𝑒𝑛𝑡 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑜𝑟𝑏𝑖𝑡) 2 × (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦))−1 
 

Inverse the result to convert curvature terminology into an inverse square meter 

of orbit energy. I will show the constant of proportionality for our planet group is 

always the average curve of orbit, which we will find to be the latus rectum 

diameter of a CSDA system. 
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Slide 8: Construct a basic CSDA: 

 

 

Dialogue: construct a basic curved space division assembly; I’ve added the 

traditional parabola directrix.  I have also constructed a curved space directrix to 

be used as limiting range of field potential controlling orbit motion of M2. Our 

planet group approaches the argument of perihelion in a south to north motion 

on the north part of a CSDA space and time curve. 
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Slide 9: ASSIGN FIELD POTENTIAL TO INDEPENDENT CURVE: 

 

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4
+ 1}}, 

{𝑡, −𝜋, 2𝜋}, PlotRange → {{−2,3}, {−1,1}}] 

 

 

 

Dialogue: Step 2: assign the field potential of M1, the field attractor, as the 

(mass/volume) content within the independent UNIT CIRCLE curve. 
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Slide 10:  

Step 3: collect square space data for orbit of mars.  

basic template for pursuit of standard g-field orbital: 

MARS    

 

 

 

 

 

 

 

 

TO CONSTRUCT MOTIVE ENERGY CURVES OF GALILEO 

we need to convert square space kilometric parameters (green column) 

describing the orbit of mars into unity ratios of a CSDA reference frame (orange 

column). Convert kilometers into CSDA unit meter of space and time using the 

average kilometric radius as denominator of all comparatives. Answers for CSDA 

comparative ratios will be returned when central property kilometer parameters 

are set as numerators (yellow column). To standardize CSDA g-field comparatives 

concerning fixed potential, multiply the potential curve by 1(p) and average 

energy curve by 2(p). Potential belongs to the independent curve:  

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑎𝑑𝑖𝑢𝑠
2

⁄

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑎𝑑𝑖𝑢𝑠
2⁄

 × 1 = 1 
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Slide 11 

Step 4: construct space and time square centered at average curve of orbit (r = 2); 

use square space position radius as (abscissa) and energy levels of position radius 

as (ordinate). High energy perihelion is red; low energy aphelion is blue. 

 

 

 

 

 

 

Dialogue continued on page 14: 

 

 



Sand Box Geometry LLC; Baltimore MD JMM Jan 2014 Page 14 

Slide 11:  

SPACE TIME SQUARE: construct space and time square centered on radius 2 of 

the average curve of orbit. Use orbit limits for (abscissa) sides and energy levels of 

orbit limits for (ordinate) sides. High energy perihelion is red; low energy aphelion 

is blue. To find energy levels, use a Mathematica template. Take the dependent 

curve as template base and set CSDA central property position parameters as (t) 

to return energy levels. 
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Slide 12; STEP5: CONSTRUCT LINEAR FOCAL PROPERTIES TO 

ORBIT SPACE AND TIME SQUARE LIMITS: (𝑠𝑙𝑜𝑝𝑒 = (𝑓(𝑟))/𝑟) 

 

 

 

 

  

Dialogue: Step 5: Construct curved space focal radii to space and time square 

corner limits, using point slope linear equation. Slope parameter for point slope 

form =  
𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙

event radius
 . We need focal radii magnitude and slope to construct energy 

and insulator tangents arranging gravity field curves of Galileo.  

Notice difference in focal magnitude and traditional central property radius. 
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Slide 13: A COMPUTER DOCUMENT FORMAT DEMONSTRATING CHANGING ORBIT  

ENERGY (f (r)) FOLLOWING SQUARE SPACE RADIUS (r). (code by Abraham) 

 

Dialogue: We can now 

see a CDF description 

using the focal radius to 

follow changing orbit 

energy f(r) of M2 

accompanying square 

space central property 

position radius (r). (OPEN 

SLIDER CONTROL, SET 

ORBIT MOTION AS 

BACKWARD AND 

FORWARD, SLOW AS 

NEEDED TO SEE PERIOD MOTION WITH RESPECT TO ENERGY) As focal radii reach 

the high energy limit perihelion they fall back to the low energy limit aphelion. 

Each cycle is 1 period long, and requires a congruent meeting of focal radii energy 

(f (r)) of curved space following central property radius (r) of square space 

happening on the average energy diameter when event slope is (−1).  

  CODE BY ABRAHAM GADALLA,     

 WOLFRAM EMONSTRATION PROJECT CONTRIBUTOR  

May 16 CDF CSDA.nb 

 

Dynamic math no longer operates (Oct. 2019) 

 

 

 

n 1.51

1.51

low energy

high energy

Changing Acceleration Dependent Curve
Relative Tangent RT

Constant Acceleration Independent Curve

Acceleration Sphere Influence ASI

3 2 1 1 2 3

1.5

1.0

0.5

0.5

1.0

1.5

2.0

BASIC GRAVITY FIELD CURVED SPACE DIVISION ASSEMBLY

Code by: Abraham Gadalla

file:///E:/sandiego/baltimore/May%2016%20CDF%20CSDA.nb
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Slide 14 

Unity curves of Galileo; curvature and radius of curvature = 1. 
PROPOSAL: LET THERE BE TWO CURVES COMPOSING (a zero-sum philosophy) 

ABOUT ORBIT ENERGY EXCHANGE BETWEEN POTENTIAL AND MOTION (M1 ↔ M2): 

1ST CURVE IS POTENTIAL: (a FIXED, CLOSED unity curve centered about F). 

(Curvature and radius of curvature = 1) 

2ND CURVE IS INVERSE SQUARE MOTIVE PROPERTIES OF POTENTIAL,  

ORBIT MOMENTUM centered as (r, f (r)) on CSDA latus rectum focal radius. 

 

 Since energy exchanged between these two curves determines orbit momentum, 

we need two equal curves to initialize and quantify available energy to share; 

when added together zero balance the exchange for stable orbit motion. 

Somewhere, on the period time curve, there will be a motive curve of same shape 

as potential less the (mass/volume) content.  Enter the latus rectum average orbit 

diameter, reference level of gravity field orbit energy curves. It is here, and only 

here, on the average diameter of an orbit can two unity curves co-exist.  
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Slide 15:  

Theorem (On the Potential and Motive Curves of Galileo) 

1).   Conserved sum of available energy for system motion is 

stored on CSDA Latus Rectum Diameter. When central force 

potential curvature =1, and focal radius motive curvature =1; 

then CSDA Square Space Radius 2 will balance, center to 

center, 2 unity curves (curvature and RoC =1). First curve is 

about F as center of potential and second curve is center of 

motive event at (slope m = -1) of energy tangent happening 

(where?) on CSDA period time curve (when?) at dependent 

curve latus rectum rotating diameter. 

 

2). Motive curve + energy level (f (r)) = potential curve.  

 

3). Potential curve - (Motive curve + energy level (f (r))) = zero 
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Slide 15 Dialogue:  
 

Notice the inverse square connector. I have two methods to compute the 

resultant radius of a motive energy curve shaped by potential. The first is a simple 

subtraction of field potential radius (1) deducted from the curved space focal 

radius (r, f(r)). The second is Sir Isaac Newton’s Inverse Square Law. 
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Slide 16 

Prove shape of average motive curve = shape of potential curve 

1. Construct range of potential as a tangent limit through orbit space. 

2. Construct shape of potential curve (curvature = 1) about center F; given. 

3. Compute and construct shape of motive curve at event slope (m = -1), using 

a) Focal property differential; 

b) Sir Isaac Newton inverse square law. 

a)  Radius of motive curve = (focal radius mag - potential) → (2 - 1 = 1) 

b) Radius of motive curve using inverse square law where initial parabola focal 

radius p = r = 1 making average energy diameter (4p) and event radius = 2. 

[((
1

2
)

2

× (4𝑝))

−1

= 1] 

QED: [Proof that latus rectum diameter is constant of proportionality in a CSDA]  
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Slide 17 

CONSTRUCT HIGH ENERGY MOTIVE CURVE OF MARS 

All CSDA motive curve radii = (focal radius magnitude - field potential) 

Focal radius magnitude = (2p -f (r)) → (2 - 0.1782 = 1.8218); 1.8218 - 1 →  

radius of motive curve  = (0.8218) 

 

 

 

 

 

 

 

 

((
1

1.8131
)

2
∗ (4))

−1

→ (0.821833) = shaping radius of motive energy  
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Slide 17:  

Dialogues: CONSTRUCT HIGH ENERGY MOTIVE CURVE OF FIELD. If motive 

properties of a planet vary as the inverse square of distance, we must subtract 

field potential part from a curved space focal radius to determine shape of curved 

space motive energy part. Since all motive parameters are subservient to 

potential; acting motive curve will:  

Maintain contact with limiting range of field potential (g-field curved space 

directrix), and  

 Maintain contact with surface acceleration curve of potential (in a similar way as 

we are captured by surface acceleration curve of our earth). 

Once we have radius of motive curve, place motive Cartesian center, (r, f (r)), on 

CSDA orbit period time curve. 
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Slide 18;  

CONSTRUCT LOW ENERGY MOTIVE CURVE OF MARS⟶  (2.1870, - 0.1957) 

{1.1957Cos[t]+2.1870, 1.1957Sin[t]-0.1957} 

 

2.1870 is event radius, ME of event radius : -0.1957 

 

2 p - f (r) - potential = motive curve radius; (2 − (−0.1957) − 1 = 1.1957) 

 

((
1

2.187
)

2
× 4(1))

−1

→1.1957 = shaping radius of motive energy. 
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Slide 19: Construct High Energy Event Tangent Following Orbit Motion for 

Planet Mars on CSDA time curve. 

𝑆𝑜𝑙𝑣𝑒[𝑦 − 0.1782 == (
−1.8131

2
) (𝑥 − 1.8131), 𝑦] → 

{{𝑦 → 0.1782  − 0.9065(−1.8131 + 𝑡)}} 

 

 

Energy Tangent Slope is found using first derivative of dependent curve. 

((
1𝑠𝑡 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑎𝑠 𝑠𝑙𝑜𝑝𝑒 𝑡𝑒𝑟𝑚;  𝑢𝑠𝑖𝑛𝑔

𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑝𝑟𝑜𝑝 (𝑟)𝑎𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑡)
) ∗ (𝑥 − 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑟)))  

𝜕𝑡(
𝑡2

−4(𝑝)
+ 𝑟) → −

𝑡

2𝑝
 → (

−1.8131

2
) 

Will return energy tangent parameters. 
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Slide 20:  

Construct High Energy Insulator Tangent separating opposing forces 

of attraction and escape. 

Compute abscissa of insulator tangent: 

𝑆𝑜𝑙𝑣𝑒 [
1

𝑥
==

1.8218

1.8131
, 𝑥] → {{𝑥 → 0.9952}} 

 
Compute ordinate of insulator tangent: 

𝑆𝑜𝑙𝑣𝑒 [
1

𝑥
==

1.8218

0.1782
, 𝑥] → {{𝑥 → 0.0978}} 

Construct High Energy Insulator Tangent separating opposing forces of attraction 

and escape. (Slope of insulator is normal with focal radius). To find (abscissa, 

ordinate) needed for point slope parametric definition, use right triangle direct 

proportion with unknown as second proportional and curvature of potential (= 1) 

as the first proportional.  Proportional 3 and 4 operate using event focal radius as 

hypotenuse numerator and (r, f (r)) as alternate denominator, r→ for abscissa and 

f (r)→ for ordinate. 
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Slide 21 

CONVERGENCE POINT OF MOTION ENERGY 

 All energy tangent phenomena (motive and insulator) connect at curved space 

directrix at point B (central property radius/2). 

Slide 21  

Dialogue: CONVERGENCE POINT OF MOTION ENERGY TANGENTS 

both tangent phenomena (motive and insulator) meet on the field curved space 

directrix at point B, (median of all square space event radii), demonstrating 

potential control of field motion as conservation law of angular momentum. (How 

do we get there?) 

Linear energy distribution on curved space directrix seems to indicate shared 

equality showing half to potential, and half to motion. But this is a sourced zero-

sum distribution property, as such, linear distribution geometry (shaping both 

curves) is equal once and only once, happening on the average energy diameter. 

Motive energy curves change shape to accommodate conserved angular 

momentum experienced by changing orbit radii. Change of shape splits 

distribution on curved space directrix, ½ to potential and ½ to motion 
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Slide 22 Construct Low Energy Orbit Tangents (Mars) 

ENERGY TAB: motive energy sum = (1.1957;motive radius + (-0.1957; f(r)) = 1) 

   

 

 

 

 

 

 

 

 

 

𝑆𝑜𝑙𝑣𝑒[−0.0891 + 11.1753(−0.996 + 𝑡) == −0.1957 − 1.0935(−2.187 + 𝑡), 𝑡] → 1.0935 

2.187

2
⟶ 1.0935 

 

Dialogue: Construct both Low Energy Orbit Tangents 

Same procedures apply. I demonstrate energy ‘tab’ for motive curve to show 

equivalence with potential for zero sum balanced orbit motion on the curved 

space directrix. Set tangents equal to each other and Intersection of tangents = 

1.0935 on the curved space directrix; central radius of aphelion/2 will also = 

1.0935. 
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Slide 23 

Finding max period momentum using space and time square event slope.     

 {Mean orbital velocity, → 24.13} 

 {Maximum orbital velocity, → 26.50} 
 

 

 

  𝑆𝑜𝑙𝑣𝑒[
1

24.13
==

(1.8218 ⁄ 2)−1

𝑣
, 𝑣] ⟶ {𝑣 → 26.4904} 

Using focal radii to track historical curvature of orbit motion is to follow changing 

KE slope moving along the period time curve. To determine orbit momentum at 

specific curves of the period requires placement of tangential velocity vector 

across the time curve slope. A system tangent normal into the paper. 
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The normal of the first derivative energy tangents slope is into the paper and 

across the time curve, giving us a read of tangential velocity of an energy curve 

angular momentum. When we substitute a focal radius magnitude instead of 

inverse square radii as the variable for the 3rd proportional first derivative slope, 

we find an accurate velocity vector across the time curve.  

 
𝑠𝑙𝑜𝑝𝑒(1)𝑜𝑓 𝑡𝑖𝑚𝑒 𝑐𝑢𝑟𝑣𝑒

𝑒𝑛𝑒𝑟𝑔𝑦@(𝑚=1)
=

(
𝑓𝑜𝑐𝑎𝑙𝑟

2
)

−1

𝑣
 

 

Momentum at perihelion is a direct proportional: 

Event slope 1 of average energy tangent is first 

proportional and v for(mars is 24.13 KM/SEC) at slope 1 
event is 2nd proportional = to: 3rd proportional is 

the first derivative of dependent curve using 

focal property magnitude as variable, change sign, 

invert, and solve for momentum as 4th proportional.  

 

Euclidean plane geometry will return 26.4904 KM/SEC for perihelion momentum 

on max energy curve for planet Mars. 
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Slide 24  
Finding min period momentum using space and time square event slope     

 {Mean orbital velocity, → 24.13} 

{Min. orbital velocity, → 21.97}  

 
                                 Solve[1 24.13⁄ == (2.1957 2⁄ )−1 𝑣⁄ , 𝑣] ⟶ {𝑣 → 21.9795} 
  

Slide 24: Same for v of aphelion. 

Slope 1 event as 1st proportional, event momentum as 2nd proportional will equal 

the first derivative of dependent curve as 3rd proportional and solve for (v) as 4th 

proportional.  

 Euclidean plane geometry will return 21.9795 KM/SEC for aphelion momentum 

on minimum energy curve for planet Mars. 
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COPYRIGHT ORIGINAL GEOMETRY BY  

Sand Box Geometry LLC, a company dedicated to utility of Ancient Greek 

Geometry in pursuing exploration and discovery of Central Force Field Curves.  

Using computer parametric geometry code to construct the focus of an 

Apollonian parabola section within a right cone.  

“It is remarkable that the 

directrix does not appear 

at all in Apollonius great 

treatise on conics. The 

focal properties of the 

central conics are given 

by Apollonius, but the 

foci are obtained in a 

different way, without 

any reference to the 

directrix; the focus of the 

parabola does not appear 

at all... Sir Thomas Heath: 

“A HISTORY OF GREEK 

MATHEMATICS” page 

119, book II. 

 

 

Utility of a Unit Circle and Construct Function Unit Parabola may not be used 

without written permission of my publishing company Sand Box Geometry LLC      

Alexander; CEO and copyright owner.  alexander@sandboxgeometry.com 

The computer is my sandbox, the unit circle my compass, and the focal radius of 

the unit parabola my straight edge. 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

mailto:alexander@sandboxgeometry.com
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CAGE FREE THINKIN’ FROM THE SAND BOX 

The square space hypotenuse of Pythagoras is the secant connecting (π/2) spin 

radius (0, 1) with accretion point (2, 0). I will use the curved space hypotenuse, 

also connecting spin radius (π/2) with accretion point (2, 0), to analyze g-field 

mechanical energy curves.   

 

CSDA demonstration of a curved space hypotenuse and a square space  

hypotenuse together. 

We have two curved space hypotenuses because the gravity field is a symmetrical 

central force and will have an energy curve at the N pole and one at the S pole of 

spin; just as a bar magnet. When exploring changing acceleration energy curves of 

M2 orbits, we will use the N curve as our planet group approaches high energy 

perihelion on the north time/energy curve.  

 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

M1
field potential

spin

square space hypotenuse

rotation

curved space hypotenuse

1.0 0.5 0.5 1.0 1.5 2.0 2.5

1.0

0.5

0.5

1.0

1.5


