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(√𝑛
3

), (√𝑛
2

), (√𝑛
1

), (√𝑛
0

)  

By constructing inversed exponents (√𝑛
2

) on to the accretion domain of a 

spinning central force field, we find mechanical allocation of (𝑀1) mass needed to 

sustain energy required for M2 orbit. This mass/volume ratio of M1 is found to be  

(√𝑟𝑎𝑑𝑖𝑐𝑎𝑛𝑑
2

) as M1 curvature evaluation (
1

( √𝑟𝑎𝑑𝑖𝑐𝑎𝑛𝑑
2

)
) of M2 displacement from 

M1 spin axis. A direct relative correlation of required M2 orbit energy distribution 

found by Sir Isaac Newton’s Universal Law (𝑟𝑎𝑑𝑖𝑐𝑎𝑛𝑑2) inversed, working linear 

Degree1 square space, operating in Degree2 curved space. 

  

First four 

indices of (n) 

 

Constructing inverse exponent curves on a spinning 

M1M2 MechanicalE G-field Central Force.  
Why inverse 

exponents on 

accretion 

domain(s)?  
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PART2: Exploring (√9
3

) (√9
2

), (√9
1

), (√9
0

). 3/9/22.23:38. 

Constructing +domain counting integer roots is done using parametric geometry.  

Parametric geometry construction for (√9
3

) = 2.08008. Construction@GTG, 

roots2019,9root.nb 

odd indices:  

(−) solution (𝑑) comes 
from 𝑄2 infinity. Flat 
lines at N pole and finds 

( √9
3

) on accretion 

domain of (𝑀1). 

(+) solution curve (𝑒) 
comes from 𝑄3 infinity. . 
Flat lines at S pole and 

finds ( √9
3

) on accretion 

domain of (𝑀1). 

 

cube root (9): ALΣXANDΣR 

No. Name Description Value Caption 

1 Curve a Curve(4.5cos(t), 4.5sin(t), t, -4, 4) 

a:(4.5cos(t), 

4.5sin(t)) independent 

2 Curve b Curve(t, t² / -18 + 9 / 2, t, -6, 10) 

b:(t, t² / -18 + 9 

/ 2) dependent 

3 Curve c Curve(9^(1 / 3), t, t, -2, 2) c:(2.08, t) abscissa definition 

4 Curve d Curve(t, t³ / -2 + 9 / 2, t, -1.5, 2.75) 

d:(t, t³ / -2 + 9 / 

2) (-) solution 

5 Curve e Curve(t, t³ / 2 - 9 / 2, t, -1.5, 2.75) 

e:(t, t³ / 2 - 9 / 

2) (+) solution 

Created with GeoGebra 

Figure 1; CSDA parametric construction for (√9
3

). (GTG, screen record LP’s, roots.) 

https://www.geogebra.org/
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Parametric geometry construction for (√9
2

). Construction@GTG, roots2019,9root.nb 

Root construction on an Energy Field domain is done on the system plane of  

rotation. I use the  (+ 𝑠𝑖𝑑𝑒) quadrant1 latus rectum produced, to find integer 

(radicand) of inquiry for root(s) constructions. 

ParametricPlot[{{
9

2
Cos[𝑡],

9

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
9
2

)
+

9

2
}, {𝑡,

𝑡2

−2
+

9

2
}, {𝑡,

𝑡2

+2
−

9

2
}, { √9

2
, 𝑡}}, {𝑡, −3𝜋, 3𝜋}, 

PlotRange−> {{
−9

2
, 9}, {−9 2⁄ , 9 2⁄ }}, AxesOrigin−> {0,0}] 

I color two solution curves. Blue is (1𝑠𝑡 𝑞𝑢𝑎𝑑(+) ) and red is (1𝑠𝑡 𝑞𝑢𝑎𝑑(−)). I 

sign the solution curves using slope happening @ 1st quad root abscissa definition. 

Both curves approach CSDA spin axis from quads (2&3), red to N from (𝑄3), and 

blue to S from (𝑄2). Flatline at poles, then find the required solution on the 

rotation domain of field.  

Spin is Rotation for nuclear CSDA analytics and Rotation is Accretion for G-field 

analytics. 

(−) solution comes from 
𝑄3 infinity. Flat lines at 

N pole and finds ( √9
3

) on 

accretion domain of 
(𝑀1). 

(+) solution curve 
comes from 𝑄2 infinity. . 
Flat lines at S pole and 

finds ( √9
3

) on accretion 

domain of (𝑀1). 

NOTE source primitive 

infinities of polar 

solution curve seeking 

inverse exponent 

definition on accretion 

domain of (𝑀1).  

 

Figure2: square space and curved space finding (√9
2

). (GtG; roots 8221; 

GeoGebra CSDA roots2). 
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EVEN INDICES: red (−) to N from (𝑄3), and blue (+) to S from (𝑄2). 

ODD INDICES: FIGURE1; (−) solution comes from 𝑄2 infinity. Flat lines at N pole 

and finds ( √9
3

) on accretion domain of (𝑀1). 

(+) solution curve comes from 𝑄3 infinity. . Flat lines at S pole and finds ( √9
3

) on 

accretion domain of (𝑀1). 

Indexed exponents flip signing in their respective source primitive infinities (from 
where they come) according to odd or even integer definition.  

Even indices are parabolic, closing and gathering a mass definition for accrete 
phenomena of Central Force F directed at (𝑀2) period time. Motive energy of 𝑀1 

period time curve is controlled by mass allocation structured by (√𝑛
2

). 

Odd indices are open curves. These curves carry charge assignment from opposite 

infinities, but still, negative parts to a N polarity and positive parts to a S polarity. I 

sense and believe this is imbued plasma control of our solar system 

electromagnetic arrangement by our galactic black hole.  

As to even indices. I suspect that (𝑖𝑛𝑡𝑒𝑔𝑒𝑟2) units of anything has opposites 

influence across their existence providing our inverse square law (exponent2) so 

prevalent throughout our experience of being.  

ALΣXANDΣR 
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Parametric geometry construction for (√9
1

). Construction@GTG, roots2019,9root.nb 

Interesting construction. I imagine a G-field CSDA where (𝑀1) uses 1st degree 

solution curves to find that place in time and space where (𝑀2) range of motive 

energy  (𝑓(𝑟)) is found to be (𝑀1) panoptic, subservient: (𝑟𝑎𝑑𝑖𝑐𝑎𝑛𝑑(𝑛), 0). Not 

only is (𝑀2)  (𝑓(𝑟)) a zero registration on the system range, but also a slope 

(𝑚 =  ±1) energy tangent event creating a central force presentation of two 

unity energy curves for sustainable orbit motion. 

UNITY CURVES: PROPOSAL; let there be two curves composing a zero-sum  

philosophy describing orbit energy exchange between (𝑀1 ↔ 𝑀2). 

  

1ST CURVE IS POTENTIAL:  a FIXED, CLOSED unity curve 
(𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =  1) centered about F.  

2nd curve is (cause and effect) motive properties of (𝑀1) potential, ORBIT 

MOMENTUM, (𝑓 (𝑟)) of Sir Isaac Newton displacement radius (𝑟). We have 

before us our system (𝑟 𝑓 (𝑟)).  

Unity Curve2 happens when etangent slope is a (± 1 𝑒𝑣𝑒𝑛𝑡) on the period time 

curve of (𝑀2). 

Since energy exchanged between these two curves determines orbit momentum, 

we need two equal energy curves to quantify available energy to share, when 

Figure 1:  2014 JMM presentation. 
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added together zero balance the exchange for stable orbit motion. Somewhere 

on the period time curve, there will be a motive energy curve of same shape as 

potential less the (mass/volume) content.  Enter the latus rectum as  average 

orbit diameter of a CSDA G-field system. Here we find the reference level of 

gravity field orbit energy curves. It is here, and only here, on the average diameter 

of an orbit can two unity curves co-exist.  

Deeper investigation(s) of (𝑀1𝑀2) explanatory is reserved for exploration of Sir 

Isaac Newton’s (𝑆&𝑇2). 

 

Two unity curves exist on and only on a latus rectum average energy diameter. 

Becoming potential and motive energy congruent at etangent event (𝑚 =  ±1) 

on the period time curve of (𝑀1𝑀2) orbit energy parameters for 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡(𝑡) 

and 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡(𝑡). 

 

Figure 2: JMM2014: CIRCULAR ENERGY CURVES OF GALILEO AND GRAVITY FIELD MOTION OF OUR PLANET GROUP. 
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Parametric geometry construction for ( √9
1

). 

ParametricPlot[{{
9

2
Cos[𝑡],

9

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
9
2

)
+

9

2
}, { √9

1
, 𝑡}, {𝑡,

𝑡1

−2
+

9

2
}, 

{𝑡,
𝑡1

+2
−

9

2
}}, {𝑡, −3𝜋, 3𝜋}, PlotRange → {{−5,10}, {−6,6}}] 

 

Note slope of 

both solution 

curves are 

linear: (±
1

2
). 

Such slope 

distributes 

Central Force 

energy in equal 

proportion with 

respect to spin. 

Half to 

potential(𝑒) half 

to motive(𝑒). 

Note numerator 

of the dependent part of solution curves carry a degree1 exponent, making (𝑡) 

the inquiry radicand (𝑛1 = 𝑛) : (𝑡,
𝑡1

∓2
± ±

9

2
). This provides (𝑀2) with (𝑓(𝑟) = 0) 

on the Gfield (dependent) period time curve. 

1st root of 9 is 9: ((√9
1

) = 9). 

CSDA central force index (√𝑛
1

) registers domain radicand for orbit energy weigh-

in. 

Note ( √𝑛1
) solution curve(s) behavior with respect to spin axis pole identity of (𝑀1).  

Blue is (1𝑠𝑡 𝑞𝑢𝑎𝑑(+) ) and red is (1𝑠𝑡 𝑞𝑢𝑎𝑑(−)). Both curves approach CSDA spin 

axis from quads (2&3), red to N from (𝑄2), and blue to S from (𝑄3).  

Parametric geometry construction for (√9
0

). Construction@GTG, roots82021, roots of 

curvedspace square space 

Figure 3: CSDA construction for √9
1

 on Central Force Field domain. 
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I have eliminated (√9
0

) from parametric arguments (𝑜𝑛 𝑚𝑦 𝑊𝑜𝑙𝑓𝑟𝑎𝑚 . 𝑛𝑏 ) 

because a domain abscissa does not exist and indeterminate exasperation by the 

computer does!!  

A domain decision for ( √9
0

) might not exist but the range part of Central Force 

mechanical potential does. Potential, if not working, is rest energy. (𝑖𝑛𝑑𝑒𝑥(0)) 

range part of solution curve(s) presents their presence to  (𝑀1) by intercept with 

the system dependent curve  at the last discovered (𝑑𝑒𝑔𝑟𝑒𝑒2 ) index inquiry for 

radicand (9). What (𝑟𝑒𝑠𝑡) range will do is intercept the time energy curve (AKA) 

discovery or independent, finding the first known (𝑑𝑜𝑚𝑎𝑖𝑛 𝑎𝑛𝑑 𝑟𝑎𝑛𝑔𝑒) 

definition for index (2) working the curved space registration of radicand (𝑛). 

  

 

ParametricPlot[{{
9

2
Cos[𝑡],

9

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
9
2

)
+

9

2
}, {√9

0
, 𝑡}, {𝑡, (

𝑡0

−2
+

9

2
)}, 

𝑡,
𝑡0

+2
−

9

2
}, {√9, 𝑡}}, {𝑡, −3𝜋, 3𝜋}, PlotRange → {{−5,10}, {−6,6}}]  

 

What’s happening here? First of all, both curves have (0 𝑠𝑙𝑜𝑝𝑒). Both solution 

curves are held tight within 

the bounds of F as rest 

energy, not working outside 
(𝑀1) sphere of influence. 

When solution curves 

operate at central force 

poles, potential of F comes 

alive! At the poles, both 

solution curves can roam 

the range of external 

spacetime with polar  
(𝑚 = 0) slope, parallel with 

accretion, operating on the 

curved space directrix. 
Figure 4: A CSDA inquiry for (√𝟗

𝟎
) 
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When the index is (0), rest energy happens forbidding range beyond discovery 

influence of (F). 

Here’s how parametric 

solution curves  

present a rest event for 

( √9
0

). 

The dependent composition 

(
𝑡0

∓2
±

9

2
)  let’s the numerator 

(𝑡0) become  (1).  

The dependent part (range) 

of a parametric solution 

curve can compute a 

(0 𝑖𝑛𝑑𝑒𝑥) for (√9
0

), the answer being (±4).  

So, solution curves seek a range place on the Central Force spin axis called (±4) 

placed in space by ( √9
0

).  

There is a Central Force domain discovery for  solution curve(s) inquiry on the 

dependent curve at the range place called  (±4) for radicand (9). The first 

domain registration produced by degree0 range investigation of ( √9
0

): is at the 

place in space ID’d as (+3, ±4). A 1st & 4th quad demonstration. 

(√𝑟𝑎𝑑𝑖𝑐𝑎𝑛𝑑(9)
2

= 3) 

I say when Cartesian number line integers are used as index for root(s) of CSDA 

domain counting integers, central force root solution curves exist. Including place 

holder (0).  

When (0) is used as index, solution curves of index (0) become linear infinite 

locked at (√𝑟𝑎𝑑𝑖𝑐𝑎𝑛𝑑
0

) range definition ( 𝑡0

−2
+

9

2
). These curves intercept 

(± 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡) time energy curve controlled by (𝑀1) at degree2 index inquiry for 

radicand integer √(𝑛)2 .  

 

QED (roots part2): 𝐴𝐿𝛴𝑋𝐴𝑁𝐷𝛴𝑅;  𝐶𝐸𝑂 𝑆𝐴𝑁𝐷 𝐵𝑂𝑋 𝐺𝐸𝑂𝑀𝐸𝑇𝑅𝑌 𝐿𝐿𝐶 



Readings from the SandBox 

Sand Box Geometry (elementary central force field code)  Page 10 
 

 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLCCOPYRIGHT ORIGINAL GEOMETRY BY  

Sand Box Geometry LLC, a company dedicated to utility of Ancient Greek 

Geometry in pursuing exploration and discovery of Central Force Field Curves.  

Using computer parametric geometry code to construct the focus of an 

Apollonian parabola 

section within a right 

cone.  

“It is remarkable that the 

directrix does not appear 

at all in Apollonius great 

treatise on conics. The 

focal properties of the 

central conics are given 

by Apollonius, but the 

foci are obtained in a 

different way, without 

any reference to the 

directrix; the focus of the 

parabola does not appear 

at all... Sir Thomas Heath: 

“A HISTORY OF GREEK 

MATHEMATICS” page 

119, book II. 

Utility of a Unit Circle and Construct Function Unit Parabola may not be used 

without written permission of my publishing company Sand Box Geometry LLC      

Alexander, CEO and copyright owner.  alexander@sandboxgeometry.com 

The computer is my sandbox, the unit circle my compass, and the focal radius of 

the unit parabola my straight edge. Armed with these as weapon and shield, I go 

hunting Curved Space Parametric Geometry. 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

 

mailto:alexander@sandboxgeometry.com
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CAGE FREE THINKIN’ FROM THE SAND BOX 

The square space hypotenuse of Pythagoras is the secant connecting (π/2) spin 

radius (0, 1) with accretion point (2, 0). I will use the curved space hypotenuse, 

also connecting spin radius (π/2) with accretion point (2, 0), to analyze G-field 

mechanical energy curves.   

 

CSDA demonstration of a curved space hypotenuse and a square space 

hypotenuse together. 

We have two curved space hypotenuses because the gravity field is a symmetrical 

central force and will have an energy curve at the N pole and one at the S pole of 

spin: just as a bar magnet. When exploring changing acceleration energy curves of 

M2 orbits, we will use the N curve as our planet group approaches high energy 

perihelion on the north time/energy curve.  

 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC  
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