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Meanderings: 3/18/22 

The foundation of human mathematics is geometry. If one 

would take some time to look at the written works (they 

happen to be library available) of Newton, Kepler, and the 

time-tested Conic Treatise of Apollonius, you will be face to 

face with the stick art of human mathematics. However, 

unlike art, freedom of interpretation is not invited. Only a 

single path of rigorous logic leading to an irrefutable 

conclusion is proffered. Proofing still rules today, as the only 

way to structure an argument advancing human math to the 

next level.  

For me, it is not important to understand the proofing used 

with exploratory Philosophical Geometry by the Masters for 

this can be as difficult to fathom as a triple integral proof. 

Simply witness the incisive descriptive language explaining 

methods used by these great geometers of our past, Huygens, 

Newton, and Kepler, to name a few, as they ponder Questions 

of Natural Phenomena of Being using descriptive mathematical 

relations between lines and curves with the unique irrefutable 

perspective of picture perfect classic geometry. 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 
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The science of curved space parametrics (2). 

Constructing inversed exponent (roots) of Cartesian domain integers part1. 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

If we want to learn how to construct curved space mechanical energy 

of central force fields, it is necessary to learn the shaping phenomena 

of exponents in square space and inversed exponents of curved space. 
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On written symbols and digital code for roots and exponents.. 

Exponents are straight forward (𝑛𝑢𝑚𝑏𝑒𝑟𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡) . Roots have an alternate 

script and symbol. Given we know the (33 = 27). We also recognize (√27
3

= 3). 

But not so often used is the written exponent for (√27
3

); (27
1

3 = 3). Note the 

inverse of exponent (3) in the examples is cube root or (
1

3
). Using inverse 

exponents eliminates the radical. 

There are three elements in the parametric geometry of roots: index; radical;  and 

radicand.   √𝑟𝑎𝑑𝑖𝑐𝑎𝑛𝑑
𝑖𝑛𝑑𝑒𝑥

 .  

We never include the index when writing square roots. Why? Don’t know! 

Anyway, the correct written term for square root of 4 is: (√4
2
= 2). Or (4

1

2). 

When constructing curved space parametric solution curves finding counting 

integer roots on a Cartesian domain number line in 2-Space, I reference the index 

and radicand as the main components composing parametric solution curves.  

We also have seldom seen exponents. 

(𝑛0 = 1); (𝑛1 = 𝑛) 

Setting these exponents (0 𝑎𝑛𝑑 1) at radical index: 

(√𝑛
1
) = 𝑛,  and  (√𝑛

0
) = (

1

0
  indeterminate infinity encountered). 

When I was in school, we simply forbade thinking a (0) denominator. Now we 

claim (indeterminate infinity)??  Curved space parametric geometry will provide a 

construction of (√𝑛
0
). A parametric curved space system having range without 

domain. A strange beast, but one hell of an interesting range intercept with the 

parametric dependent curve composing registration of the domain counting 

integer playing the part of the (𝑟𝑎𝑑𝑖𝑐𝑎𝑛𝑑). 

. 
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USING A (CSDA©) TO CONSTRUCT ROOTS OF MAGNITUDE: 

PROBLEM1: Construct the√𝟐
𝟐

: 
I will use a Euclidean perpendicular divisor to find exact and precise median of 

magnitude. The median will provide the radius of the unit circle with which to 

build the unit parabola. As in calculus, I will use methods that “flex” a curve by 

changing the definition curve (aka dependent curve) exponent. In so doing I 

create a solution curve to intercept the Latus Rectum number line at the desired 

radicand index I seek.   

PowerPoint Informative (parametric upgrade for EUCLID’S  ⊥ divisor). 

2013 MATHFEST, HARTFORD CONNECTICUT 

All my roots of magnitude constructions begin with Euclid’s perpendicular divisor. 

 

 

 

 

 

 

 

 

 

 

  

 

 
Figure 1; utility of Euclid’s Perpendicular Divisor: Step 1; set a compass greater than half considered magnitude. 
Step 2; set compass point on magnitude ends and strike arc (A) and (B).  Step 3; use straight edge connection of 
arc intercepts to find midpoint of any magnitude. 
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I’ve changed the moniker of independent curve to discovery and dependent curve 

to definition. 

We can now use computer based parametric geometry to construct (√2). After 

which I will post methods to construct roots of any magnitude. 

I find the desired root on our number line with a root abscissa ID; then construct 

curved space intercept, confirming agreement between square space math and 

curved space math root solution curves and the abscissa index ID. 

Sand Box Geometry construction (√2
2
) 𝑜𝑟 (2

1

2). 

 

I call the unit circle and unit parabola a unit moniker because the curves are 

constructed using a pre-determined unit of square space: (Euclid’s magnitude/2). 

Half to discovery and half to definition. 

 

 

Figure 2: A curved space construction for (√2
2
)  . we have the discovery curve, the definition curve, square space abscissa 

definition and curved space solution curves. 
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These are the methods to construct roots of magnitude. 

• Divide the considered magnitude in half to find the discovery radius. With 

the discovery radius construct a dependent parabola definition curve to 

register magnitude (radicand/integer) location on Cartesian square space 

number line with the CSDA parametric machine. 

• Independent (DISCOVERY) curve parametric description: 

(
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

2
𝐶𝑜𝑠 [𝑡],

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

2
 𝑆𝑖𝑛[𝑡]). 

• Dependent (DEFINITION) curve parametric description:  (𝑡,
𝑡2

−4(𝑝)
+ 𝑟),  

where (p) = (r: 
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

2
) of discovery curve. 

• Solution curves for roots of magnitude:   

{𝑡, (𝑡𝑖𝑛𝑑𝑒𝑥/∓2) ± (𝑟𝑎𝑑𝑖𝑐𝑎𝑛𝑑/2)} 
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Parametric geometry means to construct (√8
3
). 

Sand Box Geometry Demonstration on roots of magnitude; construct(√𝟖
𝟑
). 

 

 

 

 

 

 

Proof that the solution curves 

are at(√8
3
). 

We see {𝑡 → 2}is one of the 

roots. 

  

 

 

 

 

 

 

 

I reject other root solutions as I am only interested in 1st quad positive intercept 

of Cartesian number domain. 

 

 

ParametricPlot[{{
8

2
Cos[𝑡],

8

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
8
2)
+
8

2
}, {𝑡,

𝑡2

+4(
8
2)
−
8

2
}, 

{𝑡,
𝑡3

−2
+
8

2
}, {√8

3
, 𝑡}, {4, 𝑡}}, {𝑡, 0,6𝜋}, PlotRange → {{0,9}, {

−3

2
, 4}}, 

AxesOrigin → {0,0}] 

 

Solve [
𝑡3

−2
+
8

2
==

𝑡3

+2
−
8

2
, 𝑡]

𝑦𝑖𝑒𝑙𝑑𝑠
→     

{{𝑡 → 2}, {𝑡 → −2(−1)1 3⁄ }, 

{𝑡 → 2(−1)2 3⁄ }} 
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My last demonstration will be to construct:(√13
5

). 

The parametric description will be:  

 

 

 

 

 

 

 

The Curved Space Division Assembly 

construction for the (√13
5

). 

 

 

Proof that the solution curves are at the fifth root of 13. 

 

 

 

 

We see that one solution is (𝑡 → 131 5⁄ ), proof complete… ALΣXANDΣR 

Gauss Fundamental Theorem of Algebra determines number of solution terms a 

polynomial has by highest degree exponent. {√13
5

, 𝑡} has 5 inversed exponents: 

(𝑙𝑒𝑡 (13
1

5) = 𝑛) then (𝑛5) = 13. Solution requires 5 equal multipliers. Gauss 

zeros a polynomial for solution term(s). Curved space zeros slope of solution 

curves to fall precisely on root(index) of a CSDA domain integer.  

ParametricPlot[{{
13

2
Cos[𝑡],

13

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
13
2
)
+
13

2
}, {𝑡,

𝑡2

4 (
13
2
)
−
13

2
}, {𝑡,

𝑡5

−2
+
13

2
}, 

{√13
5

, 𝑡}}, {𝑡, −2,6𝜋}, PlotRange → {{−2,14}, {−2,8}}] 

Solve[
𝑡5

−2
+
13

2
==

𝑡5

+2
−
13

2
, 𝑡]

𝑦𝑖𝑒𝑙𝑑𝑠
→    {{𝑡 → −(−13)1 5⁄ }, {𝑡 → 131 5⁄ }, 

{𝑡 → (−1)2 5⁄ 131 5⁄ }, {𝑡 → −(−1)3 5⁄ 131 5⁄ }, {𝑡 → (−1)4 5⁄ 131 5⁄ }} 
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Curved space construction of (√2
4
); to see the changing shape of even 

indices solution curves. 

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}, {√2

4
, 𝑡}, {𝑡,

𝑡4

−2
+
2

2
}, 

{𝑡,
𝑡4

+2
−
2

2
}}, {𝑡, −𝜋, 𝜋}, PlotRange → {{−3,3}, {

−3

2
,
3

2
}}] 

 

We see 

that even 

indices 

solution 

curves are 

parabolic 

shaped. 

 

 

  
Figure 3: Curved Space Construction for √2

4
. 
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Curved space construction of (√3
5
); to see the changing shape of odd 

indices solution curves. 

ParametricPlot[{{
3

2
Cos[𝑡],

3

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
3
2
)
+
3

2
}, {𝑡,

𝑡5

−2
+
3

2
}, {𝑡,

𝑡5

+2
−
3

2
}, 

{√3
5
, 𝑡}}, {𝑡, −3𝜋, 3𝜋}, PlotRange → {{−4,4}, {−2,2}}, AxesOrigin−> {0,0}] 

 

Note: both solution 

curves 

(+&−, 𝑜𝑑𝑑&𝑒𝑣𝑒𝑛) 

always pass through 

independent 

(
𝜋

2
;  90°;𝑁) & 

(
3𝜋

2
; 270°; 𝑆) spin 

vertices of CSDA 

parametric machine 

with flatline (zero 

slope). Square space 

math zero’s a 

polynomial to find 

roots, curved space 

zeroes slope. The spin 

angles of an analytical 

CSDA profile sphere are 90˚ and 270˚. Vertices N & S. N is (π/2), and S is (
3𝜋

2
).  

Rotation diameter end points also have definition. Rotation diameter of a 

parametric CSDA is found as a chord of the dependent parabola curve, the system  

Latus Rectum parabola chord with ends E & W. W is (π; 180°) and E is (0°or 2π; 

360°). 

These four radian angles are the only radian description used by the Sandbox. 

Spin: N: (π/2 = 90°); S: (
3𝜋

2
= 270°).  Rotation: W: (π = 180°); E: (0°or 2π; 360°). 

Figure 4: Curved Space Construction for √3
5

. 
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EVEN INDICES √2
4

 

Even indices seem to 

favor two root abscissa 

ID. One on negative side 

of discovery curve 

domain and one on the 

positive side of discovery 

domain.  

 

 

ODD INDICES: seem to favor one root abscissa ID on the positive side of 

discovery domain.                                                                                     

on signing CSDA spin-

rotation space: 

(π/2 = 90°): Positive (y) is 

positive spin sourced 

from positive side of 

accretion domain of F.  

(
3𝜋

2
= 270°): Negative (y) 

is negative spin sourced 

from negative side of 

accretion domain of F. 

  

(π = 180°): Negative (x) is negative side of accretion. 

(0°or 2π; 360°): Positive (x) is positive side of accretion. 

END CSDA© MATH OPERATIONS: DIVISION AND ROOTS 0F MAGNITUDE.   

ALΣXANDΣR 

Figure 6: CSDA construction defining shape of odd indices. 

Figure 5: CSDA curved space construction of even indices for roots of magnitudes. 
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PART2: Exploring (√9
2
), (√9

1
), (√9

0
). 3/9/22. 23:38. 

Going from square space +domain counting integer roots to curved space solution 

curves working the same problem of indexing a radicand can only be done with 

human imagination and parametric geometry.  

A central force profile of a degree3 field energy shape rotates system (domain) 

using spin (range) as locator for system point mass center (𝐹). 

Parametric geometry construction for (√9
2
). Construction@GTG, roots2019,9root.nb 

Root construction on spin and rotation of Energy Field domain is done using the  

(+ 𝑠𝑖𝑑𝑒) system latus rectum as a position vector investigation. I use the 

dependent (𝑢𝑛𝑖𝑡 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎) curve focal radius aka (position vector) to bring 

integer(radicand) of inquiry unto CSDA registration for root(s) constructions. 

ParametricPlot[{{
9

2
Cos[𝑡],

9

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
9
2
)
+
9

2
}, {𝑡,

𝑡2

−2
+
9

2
}, {𝑡,

𝑡2

+2
−
9

2
}, {√9

2
, 𝑡}}, {𝑡, −3𝜋, 3𝜋}, 

PlotRange−> {{
−9

2
, 9}, {−9 2⁄ , 9 2⁄ }}, AxesOrigin−> {0,0}] 

 I color two solution 

curves. Blue is 

(1𝑠𝑡 𝑞𝑢𝑎𝑑(+) ) and red 

is (1𝑠𝑡 𝑞𝑢𝑎𝑑(−)). I sign 

the solution curves using 

slope happening @ 1st 

quad root abscissa 

definition. Behavior is 

always the same. Both 

curves approach CSDA 

spin axis from quads 

(2&3), red to N from 

(3), and blue to S from 

(2). Flatline at poles, 

then find the required 

solution on the rotation 

domain of field.  

Figure 7: square space and curved space finding (√9
2
). (GtG; roots 8221; 

GeoGebra CSDA roots2). 
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Spin is Rotation for nuclear CSDA analytics and Rotation is Accretion for G-field 

analytics. 

Parametric geometry construction for (√9
1
). Construction@GTG, roots2019,9root.nb 

Interesting construction. I imagine a G-field assembly where (𝑀1) uses a position 

vector to define available orbit energy for stable (𝑀1𝑀2) orbit parameters. (𝑀1) 

does so by placing a position vector investigation at that place in time and space 

where (𝑀2) range of motive energy  (𝑓(𝑟)) is found to be  (𝑟𝑎𝑑𝑖𝑐𝑎𝑛𝑑(𝑛), 0). 

Establishing Linear root solution curves (+ 𝑎𝑛𝑑 −) degree1 curved space 

intercept with desired integer index. A two-pronged pinpoint of motive energy 

center on the period time curve of (𝑀2) with respect to (𝑀1) spin. A central force 

presentation of two unity energy curves for sustainable orbit motion. 

UNITY CURVES: PROPOSAL; let there be two curves composing a zero-sum 

philosophy describing orbit energy exchange between (𝑀1 ↔ 𝑀2). 

 1ST CURVE IS POTENTIAL:  a FIXED, CLOSED unity curve (curvature and radius of 

curvature = 1) centered about F.  

2nd curve is inverse square motive properties of (𝑀1) potential, ORBIT 

MOMENTUM, centered as displacement radius (𝑟) of Sir Isaac Newton. (𝑟 𝑓 (𝑟)) 

registered as a second unity curve on domain of (𝐹) having parametric analytical 

happenings when etangent slope is a (± 1 𝑒𝑣𝑒𝑛𝑡) on the period time curve of 

(𝑀2). 

Figure 8:  2014 JMM presentation. 
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Since energy exchanged between these two curves determines orbit momentum, 

we need two equal energy curves to initialize and quantify available energy to 

share, when added together zero balance the exchange for stable orbit motion. 

Somewhere, on the period time curve, there will be a motive energy curve of 

same shape as potential less the (mass/volume) content.  Enter the latus rectum 

as  average orbit diameter of a CSDA system. Here we find the reference level of 

gravity field orbit energy curves. It is here, and only here, on the average diameter 

of an orbit can two unity curves co-exist.  

Deeper investigation(s) of the previous (𝑀1𝑀2) explanatory is reserved for 

exploration of Sir Isaac Newton’s (𝑆&𝑇2). 

 

Essential of (𝑀1𝑀2) orbit energy exchange allow a philosophical reasoning for 

Parametric geometry construction for (√9
1
) on a central force energy field. 

 

 

 

 

 

Figure 9: JMM2014: CIRCULAR ENERGY CURVES OF GALILEO AND GRAVITY FIELD MOTION OF OUR PLANET GROUP. 
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Parametric geometry construction for (√9
1
). 

 

ParametricPlot[{{
9

2
Cos[𝑡],

9

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
9
2)
+
9

2
}, {√9

1
, 𝑡}, {𝑡,

𝑡1

−2
+
9

2
}, 

{𝑡,
𝑡1

+2
−
9

2
}}, {𝑡, −3𝜋, 3𝜋}, PlotRange → {{−5,10}, {−6,6}}] 

 

 

Note slope of both solution curves are linear: (±
1

2
). Such slope distributes Central 

Force energy in equal proportion. Half to potential half to motive(𝑒). Note 

numerator of the dependent part of solution curves carry a degree1 exponent: 

(𝑡,
𝑡1

∓2
±±

9

2
).  

1st root of 9 is 9: ((√9
1
) = 9). 

Figure 10: CSDA construction for √9
1

 on Central Force Field domain. 



Reading from the SandBox 
 

Sand Box Geometry (Screen Record 1 roots and exponents) Page 16 

Linear solution curves of F, register domain counting integers with pinpoint 

accuracy using their slope to intercept  (𝑀2) (𝑓(𝑟)) at (0 𝑓(𝑟)). (𝑀1) uses this 1st 

degree root solution description as placement for a position vector investigation 

of slope happenings on the period time curve of  (𝑀2) to quantify system 

mechanical energy for sustainable (𝑀1𝑀2) orbit parameters at event (𝑚 = ±1) .  

 

Note solution curve(s) behavior with respect to spin axis pole identity of (𝑀1).  

 

Blue is (1𝑠𝑡 𝑞𝑢𝑎𝑑(+) ) and red is (1𝑠𝑡 𝑞𝑢𝑎𝑑(−)). I sign the solution curves using 

slope happening @ 1st quad root abscissa definition. Behavior is always the same. 

Both curves approach CSDA spin axis from quads (2&3), red to N from (3), and 

blue to S from (2).  

Linear solution curves do not flatline. Only degree2 curves can change shape to 

acquire a (𝑚 = 0) flatline attitude.  
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Parametric geometry construction for (√9
0
). Construction@GTG, roots82021, roots of 

curvedspace square space 

I have eliminated (√9
0
) from parametric arguments (𝑜𝑛 𝑚𝑦 𝑊𝑜𝑙𝑓𝑟𝑎𝑚 . 𝑛𝑏 ) 

because a domain abscissa does not exist and indeterminate exasperation by the 

computer does!! I include {√92 , 𝑡} as only place curved space range parameters can 

find comfort because this is the last known address of a degree2 curve 

intersection by range and domain producing index (2) solution curves for square 

space radicand (9).   

A domain decision for (√9
0
) might not exist but the range part of Central Force 

mechanical energy can. Potential is not potential if not working, only rest energy. 

(𝑖𝑛𝑑𝑒𝑥(0)) solution curve presents presence to (𝑀1), by intercept with the 

system dependent curve at the last known index (𝑑𝑒𝑔𝑟𝑒𝑒2 ) index root inquiry 

for counting integer (radicand) having both a domain and range definition for 

index (2).    

ParametricPlot[{{
9

2
Cos[𝑡],

9

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
9
2
)
+
9

2
}, {√9

0
, 𝑡}, {𝑡, (

𝑡0

−2
+
9

2
)}, 

𝑡,
𝑡0

+2
−
9

2
}, {√9, 𝑡}}, {𝑡, −3𝜋, 3𝜋}, PlotRange → {{−5,10}, {−6,6}}]  

 

What’s happening? First of 

all, both curves have 

(0 𝑠𝑙𝑜𝑝𝑒). Both solution 

curves are held tight within 

the bounds of F as rest 

energy. When solution 

curves operate at central 

force poles, potential of F 

comes alive! Both solution 

curves run parallel with 

accretion.  

Figure 11: A CSDA inquiry for (√𝟗
𝟎
) 
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Both solution curves {𝑡, (
𝑡0

∓2
±
9

2
) present a solution event for range part of 

system. 

The dependent part of 

curved space can compute 

the (0 𝑖𝑛𝑑𝑒𝑥) used as 

exponent (𝑡0) in the 

solution parameters for  

(√9
0
), the answer being 

(±4).  

So, solution curves seek a 

range place on the Central 

Force spin axis called (±4).  

There is one and only one 

domain discovery for  solution curve(s) inquiry on the dependent curve at the 

range place called  (±4).   

(√𝑛
2
). 

I say when Cartesian number line integers are used as index for root(s) of 

counting integers, a CSDA central force root solution curves exist, including place 

holder (0).  

When (0) is used as index, solution curves of index (0) define the last known 

degree2 solution curve radicand integer (𝑛).  

This is the last known inversed exponent of curved space. (𝑡1) is linear and not 

truly a curve, though lines are considered curves by?? And (√𝑡
0
) is without Domain 

definition, clearly forbidden (𝑡
1

0) has (0 𝐼𝑁𝑁𝐴’ 𝐷𝐸𝑁𝑂𝑀𝐼𝑁𝐴𝑇𝑂𝑅!!!) What else is 

a Central Force solution curve to do but find the last known (𝑡
1

2) for a domain 

Espiritu.  

QED: 𝐴𝐿𝛴𝑋𝐴𝑁𝐷𝛴𝑅;  𝐶𝐸𝑂 𝑆𝐴𝑁𝐷 𝐵𝑂𝑋 𝐺𝐸𝑂𝑀𝐸𝑇𝑅𝑌 𝐿𝐿𝐶 

Thursday, February 17, 2022. 04:24. 
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Why would we want to construct roots on a spinning central force domain? 

Because a deeper sense of Central Force natural ME can be reached. It’s a deep 

place to go when one takes the dependent part of solution curves and inverts the 

dependent composition of integer roots: 

investigating solution curves for (√2
2
).  

Note: solution 

curves (c and g) 

pass through 

independent 

(
𝜋

2
;  90°;𝑁) & 

(
3𝜋

2
; 270°;𝑆) 

with flatline (zero 

slope). (𝑐) is blue 

(+) and (𝑔) is 

red (−). 

GeoGebra parametrics has inverse exponent for negative solution curve (𝑔). The 

inverse curve (𝑑) vertex remains in contact with solution for (√2
2
) curve (𝑔). 

Curve (𝑑) has 3 parts, separated via asymptotes (±√2
2
). 

My Wolfram 

construction is 

inverse exponents 

only, no (−√2
2
) 

asymptote. 

Further investigation 

of central force 

inverse exponent 

curve will be 

forthcoming. 

ALΣXANDΣR 
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COPYRIGHT ORIGINAL GEOMETRY BY  

Sand Box Geometry LLC, a company dedicated to utility of Ancient Greek 

Geometry in pursuing exploration and discovery of Central Force Field Curves.  

Using computer parametric geometry code to construct the focus of an 

Apollonian parabola section within a right cone.  

 “It is remarkable that the 

directrix does not appear at all 

in Apollonius great treatise on 

conics. The focal properties of 

the central conics are given by 

Apollonius, but the foci are 

obtained in a different way, 

without any reference to the 

directrix; the focus of the 

parabola does not appear at 

all... Sir Thomas Heath: “A 

HISTORY OF GREEK 

MATHEMATICS” page 119, 

book II. 

 

Utility of a Unit Circle and Construct Function Unit Parabola may not be used 

without written permission of my publishing company Sand Box Geometry LLC      

ALΣXANDΣR, CEO and copyright owner.  alexander@sandboxgeometry.com  

The computer is my sandbox, the unit circle my compass, and 

the focal radius of the unit parabola my straight edge. 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

 

 

mailto:alexander@sandboxgeometry.com
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CAGE FREE THINKIN’ FROM THE SAND BOX 

 

The square space hypotenuse of Pythagoras is the secant connecting (π/2) spin 

radius (0, 1) with accretion point (2, 0). I will use the curved space hypotenuse, 

also connecting spin radius (π/2) with accretion point (2, 0), to analyze g-field 

energy curves when we explore changing acceleration phenomena of Gravity. 

 

Figure 12: CSDA demonstration of a curved space hypotenuse and a square space hypotenuse 
together. 

We have two curved space hypotenuses because the gravity field is a symmetrical 

central force and will have an energy curve at the N pole and one at the S pole of 

spin: just as a bar magnet. When exploring changing acceleration energy curves of 

M2 orbits, we will use the N curve as our planet group approaches high energy 

perihelion on the north time/energy curve.  

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 
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