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Constructing roots of Cartesian domain integers. 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

If we want to learn how to construct curved space mechanical energy 

of central force fields, it is necessary to learn the shaping phenomena 

of exponents in square space and inverse exponents of curved space. 
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On written symbols and digital code for roots and exponents.. 

Exponents are straight forward (𝑛𝑢𝑚𝑏𝑒𝑟𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡) . Roots have an alternate 

script and symbol. Given we know the (33 = 27). We also recognize (√27
3

= 3) 

but not so often used is the written exponent for (√27
3

); (27
1

3 = 3). Note the 

inverse of exponent (3) in the examples is cube root or (
1

3
). Using inverse 

exponents eliminates the radical. 

There are three elements in the parametric geometry of roots: index; radical;  and 

radicand.   √𝑟𝑎𝑑𝑖𝑐𝑎𝑛𝑑
𝑖𝑛𝑑𝑒𝑥

 .  

We never include the index when writing square roots. Why? Don’t know! 

Anyway, the correct written term for square root of 4 is: (√4
2
= 2). When 

constructing curved space solution roots on the Descartes domain number line 

we reference the index and radicand to construct required solution curves.  

We also have seldom seen exponents. 

(𝑛0 = 1); (𝑛1 = 𝑛) 

Setting these exponents (0 and 1) at index: 

(√𝑛
1
) = 𝑛,  and  (√𝑛

0
) =  

1

0
encountered or indeterminate infinity). When I 

was in school, simply forbade a (0) denominator now we claim??  Curved space 

parametric geometry will provide a construction of (√𝑛
0
). 

USING A (CSDA©) TO CONSTRUCT ROOTS OF MAGNITUDE: 

PROBLEM1: Construct the√𝟐
𝟐

: 

I will use a Euclidean perpendicular divisor to find exact and precise median of 

magnitude. The median will provide the radius of the unit circle with which to 

build the unit parabola. As in calculus, I will use methods that “flex” a curve by 

changing the definition curve exponent. In so doing I will cause the definition 

curve to intercept the Latus Rectum number line at the desired root of linear 

magnitude.   
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All my roots of magnitude constructions begin with Euclid’s perpendicular divisor. 

PowerPoint Informative (parametric upgrade for EUCLID’S  ⊥ divisor). 

2013 MATHFEST, HARTFORD CONNECTICUT 

 

 

 

 

 

 

 

 

 

 

 

   

I change moniker of independent curve to discovery and dependent curve to 

definition. 

We can now use computer based parametric geometry to construct (√2). After 

which I will post methods to construct roots of any magnitude. 

I construct the desired root on our number line with a root abscissa ID; then 

construct curved space intercept, confirming agreement between square space 

math and curved space math between root solution curves and abscissa ID. 

Figure 1; utility of Euclid’s Perpendicular Divisor: Step 1; set a compass greater than half considered magnitude. 
Step 2; set compass point on magnitude ends and strike arc (A) and (B).  Step 3; use straight edge connection of 
arc intercepts to find midpoint of any magnitude. 
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Sand Box Geometry construction (√2
2
) 𝑜𝑟 (2

1

2). 

 

I call the unit circle and unit parabola a unit moniker because the curves are 

constructed using a pre-determined unit of square space: (Euclid’s magnitude/2). 

These are the methods to construct roots of magnitude. 

• Divide the considered magnitude by (2) to find the discovery radius. With 

the discovery radius construct a dependent parabola definition curve for 

magnitude. 

• Independent (DISCOVERY) curve parametric description: 

(
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

2
𝐶𝑜𝑠 [𝑡],

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

2
 𝑆𝑖𝑛[𝑡]). 

• Dependent (DEFINITION) curve parametric description:  (𝑡,
𝑡2

−4(𝑝)
+ 𝑟),  

where (p) = (r: 
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

2
) of discovery circle. 

• Solution curves for roots of magnitude:   

{𝑡, (𝑡𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑟𝑜𝑜𝑡𝑖𝑛𝑑𝑖𝑐𝑒/∓2) ± (𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒/2)} 
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Parametric geometry means to construct (√8
3
). 

Sand Box Geometry Demonstration on roots of magnitude; construct(√𝟖
𝟑
). 

 

 

 

 

 

 

Proof that the solution curves 

are at(√8
3
). 

We see {𝑡 → 2}is one of the 

roots. 

  

 

 

 

 

 

 

 

I reject other root solutions as I am only interested in 1st quad positive intercept 

of number line domain. 

 

 

ParametricPlot[{{
8

2
Cos[𝑡],

8

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
8
2)
+
8

2
}, {𝑡,

𝑡2

+4(
8
2)
−
8

2
}, 

{𝑡,
𝑡3

−2
+
8

2
}, {√8

3
, 𝑡}, {4, 𝑡}}, {𝑡, 0,6𝜋}, PlotRange → {{0,9}, {

−3

2
, 4}}, 

AxesOrigin → {0,0}] 

 

Solve [
𝑡3

−2
+
8

2
==

𝑡3

+2
−
8

2
, 𝑡]

𝑦𝑖𝑒𝑙𝑑𝑠
→     

{{𝑡 → 2}, {𝑡 → −2(−1)1 3⁄ }, 

{𝑡 → 2(−1)2 3⁄ }} 

 

definition curve

abscissa definition for 8
3

discovery curve

solution curve for 8
3

2 4 6 8

1

0

1

2

3

4
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My last demonstration will be to construct:(√13
5

). 

The parametric description will be:  

 

 

 

 

 

 

 

The Curved Space Division Assembly 

construction for the (√13
5

). 

 

 

 

 

 

Proof that the solution curves are the fifth root of 13. 

 

 

 

 

We see that one solution is (𝑡 → 131 5⁄ ), proof complete…Alexander 

END CSDA© MATH OPERATIONS: DIVISION AND ROOTS 0F MAGNITUDE.   

Alexander 

ParametricPlot[{{
13

2
Cos[𝑡],

13

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
13
2 )
+
13

2
}, {𝑡,

𝑡2

4 (
13
2 )
−
13

2
}, 

{𝑡,
𝑡5

−2
+
13

2
}, {√13

5
, 𝑡}}, {𝑡, −2,6𝜋}, PlotRange → {{−2,14}, {−2,8}}] 

discovery curve

definition curve

solution curve

abscissa

13
5

5 10

2

2

4

6

8

Solve[
𝑡5

−2
+
13

2
==

𝑡5

+2
−
13

2
, 𝑡]

𝑦𝑖𝑒𝑙𝑑𝑠
→    {{𝑡 → −(−13)1 5⁄ }, {𝑡 → 131 5⁄ }, 

{𝑡 → (−1)2 5⁄ 131 5⁄ }, {𝑡 → −(−1)3 5⁄ 131 5⁄ }, {𝑡 → (−1)4 5⁄ 131 5⁄ }}  
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Parametric geometry construction for (√9
2
). 

 

 

  
Figure 2: square space and curved space finding (√9

2
). 
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Geography of a CSDA. 

I analyze curved space mechanics. I use computer constructions to explore 

Central Force Mechanics. A central force system is a spinning rotating nebulous 

object. Gravity and nuclear electron cloud are examples.  

Take our Sun. It is clearly bright and there. However, as the M1 G-field participant, 

its potential for control of all its little M2’s is what makes Gravity a mathematical 

descriptive, cloning motion of planets onto paper so we humans can predict 

physical resultant properties of G and how it works. 

I begin explanation of methods with the geography and parametric construction 

of (√2
2
). picture the following CSDA as a spinning 1H atom. The small (1) to the 

left of (H) defines this hydrogen atom as protium, element 1 of the periodic table.  

Keeps my construction simple. One proton as nucleus (origin) one electron cloud, 

as independent curve. The dependent curve defines the number (2) on the 1H 

plane of rotation. Let’s construct the (√2
2
) on the rotation plane of 1H.  

Our atom:   ParametricPlot[{{1Cos[𝑡] + 0,1Sin[𝑡] + 0}, {𝑡, 𝑡2 (−4)⁄ + 1}}, 

{𝑡,
−2

2
𝜋,
2

2
𝜋}, PlotRange → {{−2,

9

2
}, {
−2

2
,
3

2
}}] 

  

Now to 

construct the 

(√2
2
) on to 

the rotation 

plane of 

Protium, the 

building 

block of the 

universe. 

  
Figure 3: a CSDA parametric construction of Protium 
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My CSDA is a curved space analytic tool. A spinning Central Force Field. We have a 

South and North pole spin axis. We have a plane of rotation. It is a 3D object. The 

roots I have constructed, if made dynamic would be an open cylinder enclosing 

Protium. Probably also spinning. 

When using a SBG CSDA to discover integer roots of curved space I use different 

monikers. Let the independent curve be the discovery curve and the dependent 

curve be integer definition curve. 

I assign negative and positive slope to solution curves. I base sign of slope on pole 

entry and slope of solution curve intercept with square space abscissa ID of 

desired root happening @ Quad 1&4.. The (−) solution curve enters the N pole, 

flatlines at spin vertex and dives to integer selected. The (+) curve enters with 

the south pole, flatlines at spin vertex and climbs the desired root. 

The (−) solution curve is (red), The (+) curve is navy. 

 

  

Figure 4: a CSDA parametric construction for (√2
2

) . Square space abscissa ID and two Curved Space solution curves. 
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Curved space construction of (√2
4
); to see the changing shape of even 

indices solution curves. 

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}, {√2

4
, 𝑡}, {𝑡,

𝑡4

−2
+
2

2
}, 

{𝑡,
𝑡4

+2
−
2

2
}}, {𝑡, −𝜋, 𝜋}, PlotRange → {{−3,3}, {

−3

2
,
3

2
}}] 

 

We see 

that even 

indices 

solution 

curves are 

parabolic 

shaped. 

 

 

 

 

 

 

 

 

 

 

 

 

 

discovery curve 
magnitude

2

definition curve magnitude

abscissa definition 2
4

solution curves 

2
4
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Figure 5: Curved Space Construction for √2
4

. 



Reading from the SandBox 
 

Sand Box Geometry (Screen Record 1 roots and exponents) Page 11 

 

Curved space construction of (√3
5
); to see the changing shape of odd 

indices solution curves. 

ParametricPlot[{{
3

2
Cos[𝑡],

3

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
3
2
)
+
3

2
}, {𝑡,

𝑡5

−2
+
3

2
}, {𝑡,

𝑡5

+2
−
3

2
}, 

{√3
5
, 𝑡}}, {𝑡, −3𝜋, 3𝜋}, PlotRange → {{−4,4}, {−2,2}}, AxesOrigin−> {0,0}] 

 

Note: solution curves 

always pass through 

independent 

(
𝜋

2
;  90°;𝑁) & 

(
3𝜋

2
; 270°; 𝑆) spin 

vertices of CSDA 

parametric geometry 

construction with 

flatline (zero slope). 

Square space math 

zero’s a polynomial to 

find roots, curved 

space zeroes slope. 

The spin angles of a 

CSDA sphere are 

vertices N & S. N is 

(π/2), and S is (
3𝜋

2
).  

Rotation diameter end points also have definition. Rotation diameter of a CSDA is 

found as chord of the dependent parabola curve. Its parametric geometry name is 

the system Latus Rectum parabola chord with ends E & W. W is (π; 180°) and E is 

(0°or 2π; 360°). 

These four radian angles are the only radian description used by the Sandbox. 

Spin: N: (π/2 = 90°); S: (
3𝜋

2
= 270°).  Rotation: W: (π = 180°); E: (0°or 2π; 360°). 

Figure 6: Curved Space Construction for √3
5

. 
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EVEN INDICES √2
4

 

Even indices seem to 

favor two root abscissa 

ID. One on negative side 

of discovery curve 

domain and one on the 

positive side of discovery 

domain.  

 

 

ODD INDICES: seem to favor one root abscissa ID on the positive side of 

discovery domain.                                                                                     

on signing CSDA spin-

rotation space: 

(π/2 = 90°): Positive (y) is 

positive spin sourced 

from positive side of 

accretion domain of F.  

(
3𝜋

2
= 270°): Negative (y) 

is negative spin sourced 

from negative side of 

accretion domain of F. 

  

(π = 180°): Negative (x) is negative side of accretion. 

(0°or 2π; 360°): Positive (x) is positive side of accretion. 

  

Figure 8: CSDA construction defining shape of odd indices. 

Figure 7: CSDA curved space construction of even indices for roots of magnitudes. 
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COPYRIGHT ORIGINAL GEOMETRY BY  

Sand Box Geometry LLC, a company dedicated to utility of Ancient Greek 

Geometry in pursuing exploration and discovery of Central Force Field Curves.  

Using computer parametric geometry code to construct the focus of an 

Apollonian parabola section within a right cone.  

 “It is remarkable that the 

directrix does not appear at all 

in Apollonius great treatise on 

conics. The focal properties of 

the central conics are given by 

Apollonius, but the foci are 

obtained in a different way, 

without any reference to the 

directrix; the focus of the 

parabola does not appear at 

all... Sir Thomas Heath: “A 

HISTORY OF GREEK 

MATHEMATICS” page 119, 

book II. 

 

Utility of a Unit Circle and Construct Function Unit Parabola may not be used 

without written permission of my publishing company Sand Box Geometry LLC      

Alexander; CEO and copyright owner.  alexander@sandboxgeometry.com  

The computer is my sandbox, the unit circle my compass, and 

the focal radius of the unit parabola my straight edge. 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

  

mailto:alexander@sandboxgeometry.com
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CAGE FREE THINKIN’ FROM THE SAND BOX 

 

The square space hypotenuse of Pythagoras is the secant connecting (π/2) spin 

radius (0, 1) with accretion point (2, 0). I will use the curved space hypotenuse, 

also connecting spin radius (π/2) with accretion point (2, 0), to analyze g-field 

energy curves when we explore changing acceleration phenomena of Gravity. 

 

Figure 9: CSDA demonstration of a curved space hypotenuse and a square space hypotenuse 
together. 

We have two curved space hypotenuses because the gravity field is a symmetrical 

central force, and will have an energy curve at the N pole and one at the S pole of 

spin: just as a bar magnet. When exploring changing acceleration energy curves of 

M2 orbits, we will use the N curve as our planet group approaches high energy 

perihelion on the north time/energy curve.  

ALΣXANDΣR 

 

 

M1
field potential

spin

square space hypotenuse

rotation

curved space hypotenuse
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