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BEGGININGS 

My first Plane Geometry construction would be dividing a line segment in half. I 

marveled at the ability of these two tools, a compass and straight edge, to 

accomplish division of a linear segment (precisely and exactly) going beyond the 

estimate mechanical observation and mental operation needed with a ruler. I was 

so impressed I did the routine several times. I am going to write about parametric 

geometry integer division of linear magnitudes, all will begin with Euclid's 

perpendicular divisor. 

 

First, let us go back to the fall of 2000 when I decided to take another crack at 

Calculus 101 at a local community college. Being a person influenced by New 

Jersey HS grades (9 through 12) in the early 1960's, I was smitten with Big Bang, 

Quasars, Pulsars, Radio Astronomy, but mostly preoccupied with the space curves 

Professor Einstein made of Newton's Central Force F (how does one curve 

space?). It was a happening time for young minds as well as popular knowledge. 

Being introduced to the Cosmos by Dr. Carl Sagan, we were in awe of 20th century 

astronomy discoveries creating an ever-widening gulf between classical 

mechanics of Sir Isaac Newton and space curves of the Professor. To understand 

space curves, I needed to understand how to work the symbols of math. That was 

my reason for a return to higher education mathematics. 

It is during this return to community college I acquired my first "Mathematica for 

Students, ver.4” fall of 2000.  For the next several years I examined space curves 

about a central force F. I did so using Computer Algebra graphing utility of 

parametric geometry; constructing a unit parabola about a unit circle. In so doing, 

I found that if I let the unit circle be the independent curve and the construct unit 

parabola be the dependent curve, I could use rules of calculus to check out 

expected arithmetic behavior of mechanical lines and curves of square space 

Cartesian Coordinate system by doing constructions with these two elementary 

plane geometry curves.  

Composition of these plane geometry curves constructed as an elementary 

calculus function can discover and analyze basic linear meter of space curves on a 

lesser esoteric plane than heavy differential geometry math. I found means to 
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leave behind heavy math and using analytic/parametric geometry pursue 

understanding elementary square space counting mechanics using curves.  The 

unit circle will be my compass and the unit parabola focal radius my straight edge, 

and armed as the Ancients, let us look at Euclid's perpendicular divisor and find, 

using his divisor, the inverse square properties of Sir Isaac Newton’s Universal 

Law of Gravity. 

Demonstration Construction: parametric description of a Euclidean 

perpendicular divisor (divide a 3unit line in half): 
ParametricPlot[{{2Cos[𝑡],2Sin[𝑡]}, {2Cos[𝑡] + 3, 2Sin[𝑡]}, 

{
3

2
, 𝑡}}, {𝑡, −2𝜋, 2𝜋}, PlotRange → {{−1,

7

2
} , {−2,2}}] 

Constructing the fundamental 

Euclidean perpendicular divisor on 

a mag 3-line segment will divide 

the line segment in half. 

This construction involves two 

compass strikes on unit #3 on the 

number line. Set the compass 

radius slightly larger than half the 

magnitude considered. 

Where the compass strikes 

intersect, we have two points. 

Connect the points with a straight 

edge to construct the (normal) line 

dividing mag 3 in half. 

When I construct a Sand Box 

Geometry CSDA on number line 

point of interest, we find that 

Euclid's divisor has automatic 

presence. Radius of the unit circle will be magnitude/2, and when we set builder 

Figure 1: Basic Euclid divisor will divide a given magnitude in half 
with a perpendicular line construction. Cruzer, Euclidean Upgrade 
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"p" of the dependent parabola curve equal with "r" of the unit circle, we have an 

arbitrarily divided segment (two parts) of a given magnitude. We have many 

reasons to explore magnitude so I have assigned operating distinction to these 

basic curves beyond independent and dependent ‘calculus’ moniker. The unit 

circle will be my discovery curve and the unit parabola will be my definition curve. 

Half of magnitude containing the origin belongs with the discovery curve circle, 

the remainder of considered number line magnitude is with the dependent 

parabola curve. One may ask how we are to conclude the variable "r" to construct 

our discovery curve? I will have done so with Euclid's divisor. Once I have the 

midpoint of a line, a parametric CSDA is discovered:  

{𝐶𝑜𝑠[𝑡], 𝑆𝑖𝑛[𝑡]}, {𝑡,
𝑡2

−4(𝑝)
± (𝑟)}; where (r) = (p) = (

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

2
). 

Our knowledge of the world in which we live suffers a great schism. Classical 

Mechanics belong to Sir Isaac and all his great contemporaries who developed our 

foundation knowledge. And they are numerous, Galileo, Hook, Euler, Sir Francis 

Bacon, Kepler, Descartes, the Bernoulli family, Gauss and Riemann, to name just a 

few people who cultivated the seventeenth century with the seeds of 

philosophical inquiry concerning the natural surroundings of our being. From the 

swing of a pendulum to prismatic splitting of sunlight, they laid the foundation 

math of twentieth century civilization using very sophisticated Plane Geometry 

Mathematics and thought seeds of Calculus. 

Magic of Calculus created the other side of this divide. We find Relativistic 

Mechanics, Quantum Mechanics, Aerodynamics, Thermodynamics, all from 

(𝐹 = 𝑚𝑎), geometry, and calculus.  

But the application of Sir Isaac Newton’s Universal Law into the micro infinity of 

Quantum world of matter falls apart causing divide of the human knowledge base 

into Classical Mechanics and Quantum Relativistic Mechanics.  

I intend to return to utility of basic plane geometry to explore mechanical energy 

curves of two central force fields, (gravity and strong nuclear), by using picture 

perfect, computer generated parametric geometry as an alternate method to 

study space curves. Plane Analytic Geometry provides the basic math behind 



Sand Box Geometry Upgrade of Euclid’s Perpendicular Divisor Page 6 

slope and coordinate properties of lines needed to study the scalar multiplication 

and division (arithmetic) side of space curves. Once the counting of scalar 

properties of lines and curves, using curves is understood, we can begin to meter 

curved space. And it all begins with Euclid’s Perpendicular Divisor.  Alexander 

2012. 

INTEGER PARTION OF MAGNITUDE USING A SANDBOX CSDA 

What better way to study curved space then with curves? I intend to do so using 

two basic Euclidean Geometry curves. Shared Central Utility of center, will 

produce the required cooperation between two curves needed to demonstrate 

what we already know about square space math multiplication and its inverse, 

division. 

The players constructing a Curved Space Division Assembly for multiplication and 

division. 

1. There will be only two integer operators: (integer) and (1/𝑖𝑛𝑡𝑒𝑔𝑒𝑟). 

2. There will be only two infinities for the two operators to work: micro infinity for 

inverse integer population and macro infinity for integer population. 

3. There can exist one and only one connection between integers found in the 

macro infinity with the counterpart inverse of integer in the micro infinity due to 

the principal of curvature and radius of that curvature connectivity. 

Principal of linear radii and curvature relativity. For any radius (r) 

found in the macro infinity there can exist one and only one inverse (
1

𝑟
)  

representation of this radius (as curvature) in the micro infinity. Micro 

infinity evaluation of radius will be [(
1

𝑟
)
−1
= 𝑟]. 
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My curved space division assembly will use only these two types of (quadrant 1, 

(+,+)) numbers to explore multiplication and the inverse operation division, 

using curves (𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒, 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑟𝑎𝑑𝑖𝑢𝑠)
𝑦𝑖𝑒𝑙𝑑𝑠
→    (

1

𝑟
, 𝑟):  

 

Divide magnitude 3 into 5 parts.  

ParametricPlot[{{
3

2
Cos[𝑡],

3

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
3

2
)
+
3

2
}, {𝑡,

−5

3
(𝑡 −

3

5
)}, {𝑡,

−5

3
(𝑡 − 2(

3

5
))}, 

{𝑡,
−5

3
(𝑡 − 3(

3

5
))}, {𝑡,

−5

3
(𝑡 − 4(

3

5
))}, {𝑡,

1

3
(6 − 5𝑡)}, {𝑡,

−5

3
(𝑡 − 5(

3

5
))}}, 

{𝑡, −2𝜋,
9

2
}, PlotRange → {{−1,

7

2
}, {−3,

11

2
}}] 

WE use Euclid’s perpendicular 

divisor to split line (3) into two 

equal parts. Using a compass, 

construct a circle about the origin 

using Euclid’s median as radius. 

{
3

2
Cos[𝑡],

3

2
Sin[𝑡]} 

Since (p) of the dependent curve 

is the radius of the independent 

curve, construct the definition 

curve out to unit (3) on the 

number line. 

{𝑡,
𝑡2

−4(
3

2
)
+
3

2
} 

Let (y) axis integers be counting 

integers, and (x) axis integers 

define meter of magnitude.  To 

find slope for iterate divisors, we 

need the first derivative of the 

Figure 2: linear magnitude 3 units split into 5 proportional parts. 
Cruzer, Euclidean Upgrade 

mag3 5parts

1 1 2 3

1

1

2

3

4

5
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dependent curve{𝑡,
𝑡2

−4(
3

2
)
+
3

2
}. 

Ask Mathematica for the first derivative term: 𝜕𝑡 (
𝑡2

−4(
3

2
)
+
3

2
)
𝑦𝑖𝑒𝑙𝑑𝑠
→    −

𝑡

3
. 

All first derivative inquiry of the CSDA dependent curve {
𝑡2

−4(𝑝)
± (𝑟)}will be:  

(−
𝑡

2𝑝
; 𝑓𝑜𝑟 𝑎 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑜𝑟, 𝑙𝑒𝑡 (𝑡)𝑏𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑠). 

Iterators are repetitive computer service clones for duplicate lines, all having the 

same slope intercept with a number line, over and over again. Perfect divisors. 

What makes the first derivative term work as an iterator is the position it takes 

with the dependent curve. The position is called a coefficient part of the 

dependent operation. It provides slope to the divisor. 

A dependent curve divisor term is: (
−𝑡

3
(𝑡 −

3

𝑡
)); where(

−𝑡

3
) as coefficient 

provides slope of divisors where (-t) is number of parts. The term (
3

𝑡
) is linear 

place holder and has magnitude as numerator and number of parts as 

denominator. Our first iterator (fig2) becomes:{𝑡,
−5

3
(𝑡 − (1 ∗

3

5
))}. We have 

using parametric geometry (𝑡, 𝑡); {𝑡,
−5𝑝𝑎𝑟𝑡𝑠

3𝑢𝑛𝑖𝑡
(𝑡 − (1 × (

3𝑢𝑛𝑖𝑡

5𝑝𝑎𝑟𝑡𝑠
)))}. 

Our second divisor becomes: {𝑡,
−5

3
(𝑡 − 2 (

3

5
))}, or {𝑡,

−5𝑝𝑎𝑟𝑡𝑠

3𝑢𝑛𝑖𝑡𝑠
(𝑡 − 2 (

3𝑢𝑛𝑖𝑡𝑠

5𝑝𝑎𝑟𝑡𝑠
))}. 

 

Our third divisor becomes: {𝑡,
−5

3
(𝑡 − 3 (

3

5
))} or {𝑡,

−5𝑝𝑎𝑟𝑡𝑠

3𝑢𝑛𝑖𝑡𝑠
(𝑡 − 3 (

3𝑢𝑛𝑖𝑡𝑠

5𝑝𝑎𝑟𝑡𝑠
))}. 
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Our fourth divisor becomes: {𝑡,
−5

3
(𝑡 − 4 (

3

5
))} or {𝑡,

−5𝑝𝑎𝑟𝑡𝑠

3𝑢𝑛𝑖𝑡𝑠
(𝑡 − 4 (

3𝑢𝑛𝑖𝑡𝑠

5𝑝𝑎𝑟𝑡𝑠
))}. 

 

Our fifth divisor becomes: {𝑡,
−5

3
(𝑡 − 5 (

3

5
))} or {𝑡,

−5𝑝𝑎𝑟𝑡𝑠

3𝑢𝑛𝑖𝑡𝑠
(𝑡 − 5 (

3𝑢𝑛𝑖𝑡𝑠

5𝑝𝑎𝑟𝑡𝑠
))}. 

divide a magnitude 5 line into 3 parts: 

ParametricPlot[{{
5

2
Cos[𝑡],

5

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
5

2
)
+
5

2
}, {𝑡,

−3

5
(𝑡 −

5

3
)}, 

{𝑡,
−3

5
(𝑡 − 2(

5

3
))}, {𝑡,

−3

5
(𝑡 − 3(

5

3
))}}, {𝑡, −2𝜋, 2𝜋}, 

PlotRange → {{−1,6}, {−1,4}}] 

 

Same procedure as 

previous, except we will 

switch linear magnitude 

and number of partitions. 

Using Euclid’s divisor, divide 

linear magnitude (5) in half. 

Use origin half to construct 

CSDA independent 

discovery 

curve.{
5

2
Cos[𝑡],

5

2
Sin[𝑡]}. 

Next construct the 

dependent definition 

framing curve at linear magnitude (5 units), as considered line to be partitioned. 

{𝑡,
𝑡2

−4(
5

2
)
+
5

2
} 

 

 

Figure 3: CSDA construction of line 5 units long partition into 3 parts. Cruzer, 
Euclidean Upgrade 
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The first divisor: {𝑡,
−3

5
(𝑡 −

5

3
)}; giving us{𝑡,

−3𝑝𝑎𝑟𝑡𝑠

5𝑢𝑛𝑖𝑡
(𝑡 −

5𝑢𝑛𝑖𝑡

3𝑝𝑎𝑟𝑡
)}. 

The second divisor: {𝑡,
−3

5
(𝑡 − 2 (

5

3
))}; giving us{𝑡,

−3𝑝𝑎𝑟𝑡𝑠

5𝑢𝑛𝑖𝑡
(𝑡 − 2 (

5𝑢𝑛𝑖𝑡

3𝑝𝑎𝑟𝑡
)}. 

The third divisor: {𝑡,
−3

5
(𝑡 − 3 (

5

3
))}; giving us{𝑡,

−3𝑝𝑎𝑟𝑡𝑠

5𝑢𝑛𝑖𝑡
(𝑡 − 3 (

5𝑢𝑛𝑖𝑡

3𝑝𝑎𝑟𝑡
)}. 

QED: divide a magnitude 5 line into 3 parts 
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DEMONSTRATION: Construct magnitude 13 divided by 4. 

ParametricPlot[{{
13

2
Cos[𝑡],

13

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
13

2
)
+
13

2
}, {𝑡,

−4

13
(𝑡 −

13

4
)}, {𝑡,

−4

13
(𝑡 − 2(

13

4
))}, 

{𝑡,
−4

13
(𝑡 − 3(

13

4
))}, {𝑡,

−4

13
(𝑡 − 4(

13

4
))}, {𝑡, 4

𝑡

13
}, {13, 𝑡}, {𝑡, 4}}, {𝑡, −1,

27

2
}, 

PlotRange−> {{−1,
27

2
}, {−1,8}}] 

By substituting 

desired parts of 

magnitude for 

numerator (t) in 

the first derivative 

term we establish 

required slope for 

iterate division 

diagonals. A 

division diagonal is 

plane geometry 

inverse of the 

traditional 

Cartesian multiplication table diagonal connecting system center with square 

space ordered pair multiplication table composition of square space area (𝑥 ∗ 𝑦). 

Division diagonals connect dedicated (y-axis) counting integers as divisors needed 

to partition considered linear magnitude of number line space.   

COMMENTS: We see that a CSDA constructing integer division of magnitude is a 

1st quadrant square space rectangle displaying a traditional Cartesian 

multiplication table consisting of 4 (y axis) counting units by 13 (x axis) meter of 

linear space. This is a plane geometry description of combined inverse math 

operators; multiplication (4 x 13) and division (13/4). 

 

Figure 4: CSDA construction showing multiplication table diagonal and division diagonal. 
Cruzer Euclidean Parametric Upgrade 
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A CSDA construction for multiplication and division operates using system center 

as place holder (aka 0, center, or (0,0)) in space to build a 1st quad square space 

perimeter established by (y-axis) counting integer (blue dotted line) and (x-axis) 

meter of magnitude (green dotted line) figure4.  Magnitude, slope, and number of 

division diagonals, are all assigned to the work horse unit parabola curve. A CSDA 

independent unit circle controls parabola loci growth providing congruent unit 

meter between lines and curves in both curved and square space. Notice the 

integer division diagonals connect ordered counting integers with defined 

partition of magnitude.  That side of the rectangle perimeter defining magnitude 

is greater when magnitude is the greater, and the lesser when magnitude is the 

lesser, and square when magnitude and integer are equivalent. 

In linear mathematics of traditional square space, number 13 divided by four will 

have a remainder: (
13

4
= 3remainder1). A Euclidean curved space division 

assembly presents partition of magnitude as a complete sum of the whole by 

integer parts without remainder.   

 

DEMONSTRATION:  Construct linear magnitude 5 divided by integer 9. 

 

ParametricPlot[{{
5

2
Cos[𝑡],

5

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
5

2
)
+
5

2
}, {𝑡,

−9

5
(𝑡 − (1)(

5

9
)}, 

{𝑡,
−9

5
(𝑡 − 2 (

5

9
))} , {𝑡,

−9

5
(𝑡 − 3 (

5

9
))} , {𝑡,

−9

5
(𝑡 − 4 (

5

9
))} , {𝑡,

−9

5
(𝑡 − 5 (

5

9
))}, 

{𝑡,
−9

5
(𝑡 − 6(

5

9
))}, {𝑡,

−9

5
(𝑡 − 7(

5

9
))}, {𝑡,

−9

5
(𝑡 − 8(

5

9
))}, {𝑡,

−9

5
(𝑡 − 9(

5

9
))}}, 

{𝑡, −2𝜋,
11

2
}, PlotRange−> {{−1,

11

2
}, {−3,10}}] 
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COMMENTS: We see the CSDA segments 

magnitude 5 into 9 integer parts. Notice 

divisor diagonals collect between system 

center and final divisor diagonal 

description to linear magnitude. Whether 

the greater side of the (4-gon) square 

perimeter leans to integer divisor or 

magnitude, a CSDA will always sum the 

divided segments completing the whole 

at the focal radius 1st quadrant definition 

of magnitude, where the LATUS RECTUM 

focal radius will intercept parabola loci 

curve at slope (m = -1). 

END INTEGER DIVISION 

DEMONSTRATION.  

 

 

 

 

 

 

  

Figure 5:CSDA construction; magnitude (5) into (9) parts. 
Cruzer Euclidean Parametric Upgrade 
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INVERSE INTEGER PARTION OF MAGNITUDE USING A SANDBOX CSDA 

Preliminary visual math perceptions. 

• Instead of a one on one integer correspondence to unit partition, we 

should see each (π/2) collection of integers divided into parts defined by 

the inverse integer denominator. In other words: magnitude four divided 

by (1/3) has 12 parts and each (π/2) integer will have 3 of those parts. 

• The number of parts will equal: {(1/integer)-1*magnitude}.  

• Inverse integer division of magnitude will always work between the final 

division diagonal of a perfect square and system origin.  

CSDA inverse integer division will always operate on a perfect square perimeter. 

The square root of the number of units within the square perimeter boundary 

inverted = the system CoC; center of curvature anchoring the linear connection 

joining both infinities with two and only two points, the system CoC (Center of 

Curvature) with system radius of that curvature. I will show the definition curve 

focal radius 2(p) is actually a curve with curvature (
1

2𝑝
)! (page 16). 

DEFINITION: Curved space connectivity will be a line of specific 

definition between two end points,framing the dependent curve focal 

radius with independent curve CoC using curvature terms born of 

osculating circles. The radius of an osculating circle is used to meter 

“how much” curvature, or turning, will exist at a point on a curve.  

Since all iterate inverse integer divisors must sum between a final division 

diagonal of a perfect square and system origin zero, all inversed divisors, of any 

size will have slope (m = –1), slope of all perfect square diagonals. 

A sidebar about curvature before inverse integer division. 

Every straight line is defined with two points. When a line is used to measure 

curves, such a line becomes a radius connecting a point on the curve, using 

conceptual radii of curvature with center of curvature (CoC) as two point linkage. 
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Since circles always have the same radius, we have shortened radius of curvature 

for circles, to radius because a circles curvature is constant. To measure curvature 

not constant on any given curve, we also use two points. 1) The point on the 

curve, and 2) CoC (center of curvature). The distance between bend and center of 

curvature has specific meter as radius of curvature. Numerical value for a points 

curvature is just that; a number only. The usual identity for this bend ‘number’ is 

(𝜅). Defining how ‘long’ (𝜅) is? We use radii. We use differential calculus to 

meter osculating radius of curvature. Something we humans can reason with, a 

comparative, a unit length, a radius. Something a little more than a dimensionless 

number.  

To find an osculating radius of curvature, we need to construct a tangent (straight 

line touching the point at its locus) and tangent normal. A tangent normal is used 

to align a physical Center of Curvature (CoC) with respect to a locus point and its 

curvature. Such a (CoC) center found on a constructed tangent normal, will bring 

three concepts onto one straight line known as the tangent normal. (1) The 

tangent, and (2) intersecting tangent normal @ the point; where exists the 

osculating radius of curvature, and also (3) system (CoC).  

A method to evaluate curvature of a point will be found in any first-year calculus 

text book. Let (𝜅) be the curvature of a point on our parabola loci;  

then:(𝜅) =  (
𝑎𝑏𝑠|2𝑛𝑑 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒|

((1+1𝑠𝑡 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒)2)
3
2

). 

In plain language, the above term refers to a fraction. The numerator is an 

absolute value of the second derivative of a curve. The denominator refers to a 

sum (1 + the curves first derivative squared) raised to the 3/2 power. If we only 

work with circles (which I do), this entire operation would mean: to find 

mathematical description of a circles curvature; simply inverse its radius. 

End curvature statement. 
A note about dependent CSDA 

parabola curve evaluation. I 

have found a parabola offers 

two evaluations. Difficult 

differential geometry of 

curves, and simplistic 

circle Radius in units Curvature valuation 

A 2 (1/2) 

B (1/2) 2 

C 3 (1/3) 

D (1/3) 3 



Sand Box Geometry Upgrade of Euclid’s Perpendicular Divisor Page 16 

concentric circle phenomena, such as a stone tossed onto the surface of stilled water. Focal radii 

trace a moving point on a parabola loci, mimicking circular motion of mechanical energy waves such 

as a stone tossed into still water. This property is discussed in my paper on Unit Parabola identities. 

sandboxgeometry.info  duo curve analytics of a parabola.  
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DEMONSTRATION: The following construction is an inverse integer division 

plane: 3/ (1/3) = 9 parts: 

ParametricPlot[{{
3

2
Cos[𝑡],

3

2
Sin[𝑡]} , {𝑡,

𝑡2

−4(
3

2
)
+
3

2
}, {𝑡, −1(𝑡 −

1

3
)}, {𝑡, −1(𝑡 − (

2

3
)}, {𝑡, −1(𝑡 − (

3

3
))}, 

{𝑡, −1(𝑡 − (
4

3
))} , {𝑡, −1(𝑡 − (

5

3
))} , {𝑡, −1(𝑡 − (

6

3
))} , {𝑡, −1(𝑡 − (

7

3
))} , {𝑡, −1(𝑡 − (

8

3
))}, 

{𝑡, −1(𝑡 − (
9

3
))}}, {𝑡, −2𝜋, 4}, PlotRange−> {{−1,4}, {−1,4}}] 

Notice committed integer population on the (π/2) spin radii are divided into 

inverse integer parts as expected, (integers 1, 2, and 3) into 3 parts each. All 

inverse integer division hypotenuses pose the same slope (m = – 1) causing the 

CSDA assembly to manufacture the required parts of inverse division between a 

perfect square diagonal and system origin on the Cartesian plane. We see by 

inspection both CSDA curves work together to define considered magnitude using 

two infinities. Independent unit circle radius (3/2) constructs the boundary for the 

micro infinity (
1

𝑟
) where we find 

initial curvature value (CoC: (1/3, 

0)) composing the linear 

connection of curved space and 

square space (radius 3 unit 

system) with the dependent unit 

parabola radius latus rectum 

connect at (3, 0) in open macro 

infinity.      

Means to create inversed Iterators 

for division 

All coefficient terms for iterated 

inversed divisors are (𝑚 = −1) 

slope. The placeholder for each 

divisor terms are: 

 ((−1𝑠𝑙𝑜𝑝𝑒) × (𝑡 − 𝑓𝑖𝑟𝑠𝑡 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 × (1
𝑛
))), 

Figure 6:CSDA construction of an inverse integer partition.(3/(1/3)). 
 Cruzer,Euclid Upgrade 
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where (n) is inverse integer and number of divisors will be: 

 ((1
𝑛
)
−1

× (𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒)).  

Each divider of an inverse integer construction has constant slope (𝑚 = −1) to 

establish slope for division Iterators. Each divider; divisor 1, divisor 2, divisor 3 ... 

divisor ((1
𝑛
)
−1
× (𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒)) establish place holder or position of each divisor. 

(
(𝑑𝑖𝑣𝑖𝑠𝑜𝑟#)×(

1

𝑛
)

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
) CSDA inverse divisor have specific relation with the denominator 

as magnitude. For this example, we have thirds giving us 9 parts ((1
3
)
−1
× (3) = 9). 

Note that the numerator of each place holder, beginning with (1/3) increase the 

numerator by 1 going from 1 to 9 to define each divisor. When the inverse integer 

numerator reaches 9, the denominator 3 will realize the final divisor, as a fraction, 

will become partition magnitude.  

1. 1st divisor: {𝑡, −1 (𝑡 − 1

3
)}
𝑦𝑖𝑒𝑙𝑑𝑠
→    1𝑠𝑡 𝑡ℎ𝑖𝑟𝑑 

2. 2nd divisor: {𝑡, −1 (𝑡 − (2
3
)}
𝑦𝑖𝑒𝑙𝑑𝑠
→    2𝑛𝑑 𝑡ℎ𝑖𝑟𝑑 

3. 3rd divisor:{𝑡, −1(𝑡 − (3
3
))}

𝑦𝑖𝑒𝑙𝑑𝑠
→    3𝑟𝑑 𝑡ℎ𝑖𝑟𝑑 

4. 9th divisor:{𝑡, −1(𝑡 − (9
3
))}

𝑦𝑖𝑒𝑙𝑑𝑠
→    9𝑡ℎ 𝑡ℎ𝑖𝑟𝑑: 

END iterators; all (fig.6) divisors accounted for. 

 

Dual curve analytics of a parabola 

I mentioned concentric wave form as alternate curve evaluation for a parabola 

focal radius. The next two constructions shows both differential geometry meter 

of curvature for loci point on a parabola and CSDA concentric circle wave form 

meter of a central force. 

The focal radii (u1) and (u2), point out vertices of two curve analytic tangents and 

their normal. Since a radius of curvature lies on a tangent normal with the CoC of 

loci curvature, an osculating curve can be constructed at the CoC. However, we 

don’t know where to position an osculating curve CoC with respect to a point’s 

vertex curvature.  
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I can use math to determine a parabola loci curvature, know the radius of 

curvature and construct the osculating curve at the point and see the radius of 

curvature as an intercept on the curves tangent normal. 

The problem with differential geometry meter of radius of curvature on the 

tangent normal, is that these radii of curvature don’t serve well wave form 

emanating from a central force origin (F).  

ParametricPlot[{{1Cos[𝑡],1Sin[𝑡]}, {
5Cos[𝑡]

4
,
5Sin[𝑡]

4
}, {𝑡, −

𝑡2

4
+ 1}, {𝑡,

𝑡2

+4
− 1}, 

{1, 𝑡}, {𝑡,
1

4
(5 − 2𝑡)} , {𝑡,

1

4
(−5 + 8𝑡)} , {

1

4
(5√5)Cos[𝑡] + 1,

1

4
(5√5)Sin[𝑡] +

3

4
}, 

{
−1

4
, 𝑡} , {𝑡,

−7

4
} , {
1

4
(5√5)Cos[𝑡] −

1

4
,
1

4
(5√5)Sin[𝑡] −

7

4
}}, {𝑡, −2𝜋, 2𝜋}, 

PlotRange → {{−5,4}, {−5,4}}] 

Focal radii (u1) and (u2), on the other hand, serve as new central relative radii, 

providing new circles of curvature as visible by connected colors, red circle for 

(u1) and blue circle for (u2). As the parabola focal radius sweeps the locus of the 

curve, new curve meter events occur as position (𝑟, 𝑓(𝑟)) of the focal radius 

vector head are realized. Differential geometry CoC must change with each 

osculating circle constructed on 

parabola loci, why not just use 

2500-year-old focal radii 

description of changing wave 

form energy emanating from 

center F. 

I present a construction showing 

difficulty of finding curves CoC 

using a parabola. The point 

considered on the parabola curve 

is (1, 3/4). 

Using higher math, I find the 

curvature at (1, 3/4) of a unit parabola is (
4

5√5
); inversed will give a radius of 

curvature for an osculating curve (
5√5

4
). The focal radius of the construction 

points to vertices of tangent and tangent normal at (1, 3/4), and also gives a new 

Figure 7: concentric wave form emanating from (F)  
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(curve) circle: {
5Cos[𝑡]

4
,
5Sin[𝑡]

4
}. Using higher math I have determined CoC for 

(1, 3/4) and constructed the osculating curve for vertex point (1, 3/4); at the 

CoC: {
1

4
(5√5)Cos[𝑡] −

1

4
,
1

4
(5√5)Sin[𝑡] −

7

4
}. Since I know both loci point of 

curvature connectivity (CoC and (1, 3/4)); for point (1, 3/4) there is no reason why 

I can’t move the osculating curve from CoC (− 1

4
, −

7

4
) to (1, 3/4), 

 {
1

4
(5√5)Cos[𝑡] + 1,

1

4
(5√5)Sin[𝑡] +

3

4
} and see radius of curvature intercept with CoC 

on tangent normal. 

QED Alexander. 

I have constructed two osculating curves for (1, 3/4). 

The black hash mark curve is (1, 3/4) osculating curve positioned at CoC of (1, 3/4). 

The solid red 

osculating curve 

is radius of 

curvature for 

(1, 3/4) placed at 

(1, 3/4).  

Differential 

geometry is 

perfect to help 

higher math 

meter curvature 

evaluation of loci 

points, but fail in 

methods to 

meter central 

force motivated 

(F) curves. 

In the previous 

example, the 

inverse integer 

division 

denominator number is equal with unit magnitude number producing a perfect 

square where system radius of curvature (3), has connection with expected CoC 

Figure 8: demonstration of dual curve analytic geometry of a parabola. 
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(1/3 as inversed r =3) found in the micro infinity. This connection is a required tool 

for plane geometry discovery of meter concerning lines and curves found in 

central force (F) constructions using space curves. 

The next example will display a division assembly with unlike numbers, integer 

division denominator number ≠ magnitude number. The CSDA divisors structuring 

the curved space Connection Principal seems to fail. Here is a parametric 

description for a CSDA for magnitude (8) divided by (1/2).     

DEMONSTRATION: Linear magnitude (8) divided by inverse of integer (2) will 

have 16 division diagonals. In this demonstration only the first six and the last 

three division diagonals are displayed. 

ParametricPlot[{{4Cos[𝑡],4Sin[𝑡]}, {𝑡,
𝑡2

−4(
8

2
)
+ 4}, {𝑡, −1(𝑡 −

1

2
)}, {𝑡, −1(𝑡 −

2

2
)}, 

{𝑡, −1 (𝑡 −
3

2
)} , {𝑡, −1 (𝑡 −

4

2
)} , {𝑡, −1(𝑡 −

5

2
)} , {𝑡, −1 (𝑡 −

6

2
)} , {𝑡, −1 (𝑡 −

14

2
)}, 

{𝑡, −1(𝑡 −
15

2
)}, {𝑡, −1(𝑡 −

16

2
)}}, {𝑡, −

1

2
,
17

2
}, PlotRange−> {{−1,9}, {−3,

17

2
}}] 

Divisors one through six and the final three of 16 divisors are constructed. Every 

divisor will have slope (m = –1). Notice each π/2 integer is divided in half, splitting 

magnitude (8) into (16) equal parts. This example will sum the parts (16 total) 

constructing the whole (8) at the curved 

space unity ratio where all three events, 

tangent slope of definition curve, linear 

magnitude, and integer parts summing 

linear  

magnitude, meet at slope (𝑚 = −1). 

All inverse integers working a CSDA sum a 

perfect square, but our dual infinity 

operating terms, ½ and 8, leaves Curved 

Space Connection Principal out of "focus", 

we expect (𝐶𝑜𝐶 =  
1

8
) because (CSDA r = 

8).The final CSDA division diagonal for magnitude (8) is at slope (m = –1), but the 

Figure 9: CSDA construction of linear magnitude  
divided by inversed integer 2 or(1/2). Cruzer, 
 Euclid parametric upgrade 
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first initial inverse divisor apparently claiming curve connectivity is (1/2) and not 

(1/8) as (CoC) for CSDA radius (8), a seeming incongruity.  How do we find 

correction within the square table of math operators division and multiplication 

to satisfy the Connecting Principal found in our curved space? 

A Postulate for Initial(CoC)Curvature and Final Radius Connecting 

Principal of a CSDA:Center of Curvature of every CSDA system analysis 

will always be: [(Independent Curve Curvature) times the Euclidean 

constant (1/2) used to split space into the twin infinities of our 

being]. 

For our example of 8 unit magnitude into halves: CSDA COC for mag8units/2: 

(𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑟𝑎𝑑𝑖𝑢𝑠 = 4, (𝑘 =  
1

4
) ; 𝑎𝑛𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 = (

1

4
×
1

2
=
1

8
)) 

If the independent CSDA circle radius is (magnitude/2) then CSDA circle curvature 

is (2/magnitude); and (1/2) ×(2/magnitude) = (
1

2
×

2

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
=

1

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
) as 

CSDA system (CoC), and ((
1

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
)
−1

= 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒) 

 

The previous construction demonstrates the fact we have two radii of meter to do 

curve analytics. One for square space and one for curved space. In square space 

analytics, Cartesian center (0, 0) is fixed with the constant curve loci of 

Archimedes circle. However, once the curve is made not constant, differential 

geometry provides a new radius, not one with an easily fixed and discernible 

center, but a radius based on CoC (center of curvature) and RoC (radius of 

curvature) found with the math of osculating curves. The plane analytic 

parametric geometry of my CSDA dependent curve can handle both. 

QED END Curved Space Partition of Magnitude 

 

 

 

Conclusion: We have introduced two radii of measure in our mathematical tool 

box. One is the radius of Archimedes. The other has been born of heavy math of 

Gauss and Riemann vision of Differential Geometry. The seeds of Curvature 
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exploration using Differential Geometry were cultivated by many prior to their 

(Gauss and Riemann) advancement. I know this because Sir Isaac Newton1 

certainly knew of curvature because he coated a most difficult concept 

(curvature) as inverse square law (
1

𝑟2
); which is the same as (𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒)2. 

Calculus, or as he called his work fluxions, was enough removed (somethin’ new) 

from mainstream knowledge (bringing expected criticism and debate) that he 

coated (𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒)2 as inverse square law, a developing explored concept in his 

time. 

The two radius of meter: 

• Archimedes: from origin center to circle (our square space radius). 

• Our curved space radius: From osculating center of curvature (CoC), as one 

end point part of a radius of curvature. The other end point part is found on 

the considered loci of a curve as final concluding end point, not as a radius, 

but an osculating circle radius of curvature. Osculating radii have specific 

meter, derived from osculating curvature value(𝜅), a number. To realize a 

linear value as a physical measure we can ‘see’, we invert curvature to 

acquire radius of curvature at a point.  

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

An aside: Using higher math, I find the curvature at (1, 3/4) of a unit parabola is (
4

5√5
); and 

the radius of curvature for (1, 3/4) 𝑖𝑠 (
5√5

4
). Now, the focalradius at (1, 3/4) is (2 − 𝑓(𝑟))

𝑦𝑖𝑒𝑙𝑑𝑠
→    (2 −

3

4
)
𝑦𝑖𝑒𝑙𝑑𝑠
→    (

5

4
). A CSDA focal radius can be used to find differential geometry 

curvature evaluation of parabola loci (where unit 2 is parabola vertex RoC; 2p). 

(2) (
5

4
)(√

5

4
) =

5√5

4
; 𝑪𝑺𝑫𝑨 𝑠𝑦𝑠𝑡𝑒𝑚 𝑅𝑜𝐶 

  

                                                
1Alfred Gray, Modern Differential Geometry of Curves and Surfaces, with Mathematica, footnote page 14 
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 Curvature and radius of curvature 

From my Hartford Connecticut MAA MathFest 2013 paticipation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WHY FUSS WITH A CONNECTING PRINCIPAL? Because Sir Isaac Newton has 

given us inverse square space to explain field properties we live with and inverse 

square law is essentially the square of curvature. 

COPYRIGHT ORIGINAL GEOMETRY BY  

Alexander, CEO Sand Box Geometry LLC 

 

 

COPYRIGHT ORIGINAL GEOMETRY BY  

Figure 10: 2013 MATHFEST, HARTFORD CONNECTICUT 



Sand Box Geometry Upgrade of Euclid’s Perpendicular Divisor Page 25 

Sand Box Geometry LLC, a company dedicated to utility of Ancient Greek 

Geometry in pursuing exploration and discovery of Central Force Field Curves.  

Using computer parametric geometry code to construct the focus of an 

Apollonian parabola section within a right cone.  

“It is remarkable that the directrix does not appear at all in Apollonius great treatise on conics. 

The focal properties of the 

central conics are given by 

Apollonius, but the foci are 

obtained in a different way, 

without any reference to the 

directrix; the focus of the 

parabola does not appear at 

all... Sir Thomas Heath: “A 

HISTORY OF GREEK 

MATHEMATICS” page 119, 

book II. 

Utility of a Unit Circle and 

Construct Function Unit 

Parabola may not be used 

without written 

permission of my 

publishing company Sand Box Geometry LLC      Alexander; CEO and copyright 

owner.alexander@sandboxgeometry.com 

The computer is my sandbox, the unit circle my compass, and 

the focal radius of the unit parabola my straight edge. 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

 

mailto:alexander@sandboxgeometry.com
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CAGE FREE THINKIN’ FROM THE SAND BOX 

The square space hypotenuse of Pythagoras is the secant connecting (π/2) spin 

radius (0, 1) with accretion point (2, 0). I will use the curved space hypotenuse, 

also connecting spin radius (π/2) with accretion point (2, 0), to analyze g-field 

mechanical energy curves. 

 

Figure 11: CSDA demonstration of a curved space hypotenuse and a square space hypotenuse 
together. 

We have two curved space hypotenuses because the gravity field is a symmetrical 

central force, and will have an energy curve at the N pole and one at the S pole of 

spin; just as a bar magnet. When exploring changing acceleration energy curves of 

M2 orbits, we will use the N curve as our planet group approaches high energy 

perihelion on the north time/energy curve.   

ALΣXANDΣR; CEO SAND BOX GEOMETRY  
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