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An elementary study of the roots and exponents; and a Computer Based Math 

mechanical contrivance to construct rotation roots on a spinning central force 

field.  

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

If we want to learn how to construct mechanical energy curves of 

central force fields, it is necessary to learn the shaping phenomena of 

exponents in square space and curved space.   

Constructing Roots on a 
Central Force 
Magnitude 

April 7 
2019 

 Gauss’s fundamental theorem of algebra, simply stated, 

declares that a polynomial when zeroed out, will have a 

number of solutions determined by highest degree 

exponent. I construct a parametric geometry abscissa 

definition for 1st Quadrant root(s) of a specific central 

force magnitude. Then I provide two curved space 

solution curves to intercept abscissa definition of roots. 

The first place I need visit, as a starting comparative of 

square space math, curved space math, discovery and 

Computer Based construction of roots of a Central Force 

Magnitude has to be exponents and how they shape the 

space curves we live with.  

Curves and lines 
of numbers and 
their exponents 
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INTENTIONS 

I have been working with methods to construct G-field mechanical energy curves 

for 25 years. 

I feel the only way to, analyze, construct, and see changing mechanical energy of 

the G-field is with Computer Based Geometry. Specifically, computer based 

parametric geometry using curves. 

What better way to study curved space then with curves? 

I invented a Curved Space Division Assembly so I could use curves to study curved 

space mechanical phenomena. 

I found methods, using the same computer mechanical tool, to construct roots. 

Constructing roots using curves is enlightening. I use the index (a) as a parametric 

exponent to construct solution curves for designated root of (b). (√𝑏
𝑎

). 

There will be two solution curves for (ath) root radicand (b). {𝑡,
𝑡𝑎

∓2
±

𝑏

2
}. 

A CSDA is a central relative machine. Being so, I can study the two infinities of our 

being. Parametric Central Relativity view of the Creation is a two-way street. On 

one end of this linear vision into space of our being is curvature. The other end is 

radius of curvature. Micro space infinity, the realm of curvature, and macro space 

infinity for radius, is the sight line connecting Creation with the human mind. 

It is not a far step to change a Cartesian Coordinate System into a spinning 

platform, to work space curves with square space math. We do so with a little 

ancient Greek Geometry, and math essence of the past 500 years, and 21st 

century computer technology. 
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CURVED SPACE DIVISION ASSEMBLY (CSDA©) 

What better way to study curved space then with curves? 

There are only two curves in Plane Geometry that have loci obedient to one 

center that I know of.  

  

 

 

 

 

• The Circle. We already know a circle and its 

center. 

• The Parabola and its focus. This curves locus has obedience split between a 

directrix and its focus. 

What is interesting about a parabola curve is how a center point becomes a focus. 

A unit Parabola focal radius is not constant as a circles radius is, but changes 

meter as it traces the locus of the curve. What is constant in a parabola, is the 

properties exhibited between the focus, vertex, and directrix. I use the number 

(p) to demonstrate this fact. The line from the focus to the curve’s vertex is the 

initial focal radius and is 1 unit in length, therefore (p = 1) in the Unit Parabola 

Construction (only) The magnitude of dependent curve, initial (p), grows with the 

size of the independent curve circle. 

Significant parts of a parabola are: 

• initial focal radius (p, focus to vertex) and  

• Latus Rectum Diameter (4p).  

Important! (𝑟 = 𝑝); always. When studying 3-dimensional space, this adage 

becomes (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑜𝑐𝑎𝑙 𝑟 =
𝜋

2
𝑠𝑝𝑖𝑛 𝑟). 
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Figure 2: the unit circle  

Figure 1: the unit parabola  
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Geography of a Curved Space Division Assembly (CSDA) 

 

 

 

This construction is a basic parametric geometry CSDA. It is the standard model I 

use to determine roots of linear magnitudes. A CSDA spins. A freeze frame of 

CSDA spin is always congruent with any other freeze frame spin selection.  

CSDA curved 

space geometry 

uses calculus 

function hierarchy 

to establish a 

parametric 

geometry 

function, allowing 

the CSDA system 

utility of two 

parametric 

curves. The discovery curve will be the independent curve, definition curve is 

dependent. 

 

 

  

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}}, {𝑡, −𝜋, 𝜋}, 

PlotRange → {{−3,3}, {
−3

2
,
3

2
}}] 

 

dependent curve

unit parabola

independent curve

unit circle

p

r p

axis of spin
plane of rotation
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Figure 3: basic CSDA. Most important proportion is (π/2) spin radius (r) and initial focal radius 
(p); (r = p) 
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All my roots of magnitude constructions begin with Euclid’s perpendicular divisor. 

PowerPoint Informative (parametric upgrade for EUCLID’S  ⊥ divisor). 

2013 MATHFEST, HARTFORD CONNECTICUT 

 

 

 

 

 

 

 

 

 

 

 

   

We can now use computer based parametric geometry to construct (√2). After 

which I will post methods to construct roots of any magnitude. 

I use basic computer technology to find and mark the place in/on the space 

defined by our linear number line with a root abscissa ID; then construct curved 

space intercept, confirming agreement between square space math and curved 

space math between root solution curves and abscissa ID.  

Figure 4; utility of Euclid’s Perpendicular Divisor: Step 1; set a compass greater than half considered magnitude. 
Step 2; set compass point on magnitude ends and strike arc (A) and (B).  Step 3; use straight edge connection of 
arc intercepts to find midpoint of any magnitude. 
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Sand Box Geometry construction (√2
2

) 𝑜𝑟 (2
1

2). 

 

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}, {√2, 𝑡}, {𝑡,

𝑡2

−2
+

2

2
}, 

{𝑡,
𝑡2

+2
−

2

2
}}, {𝑡, −𝜋, 𝜋}, PlotRange → {{−3,3}, {

−3

2
,
3

2
}}] 

 

I call the unit circle and unit parabola a unit moniker, because the curves are 

constructed using a pre-determined unit of square space: (Euclid’s magnitude/2). 

 

  

Figure 5: Curved Space Construction for √2. Abscissa definition is √2. Both solution curves intercept √2. 
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Curved space construction of (√2
4

); to see the changing shape of even indices solution 

curves. 

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}, {√2

4
, 𝑡}, {𝑡,

𝑡4

−2
+

2

2
}, 

{𝑡,
𝑡4

+2
−

2

2
}}, {𝑡, −𝜋, 𝜋}, PlotRange → {{−3,3}, {

−3

2
,
3

2
}}] 

We see 

that even 

indices 

solution 

curves are 

parabolic 

shaped. 

 

 

 

 

These are the methods to construct root of magnitude. 

• Divide the considered magnitude by (2) to find the discovery radius. With 

the discovery radius construct a dependent parabola definition curve for 

magnitude. 

• Independent (DISCOVERY) curve parametric description: 

(
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

2
𝐶𝑜𝑠 [𝑡],

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

2
 𝑆𝑖𝑛[𝑡]). 

• Dependent (DEFINITION) curve parametric description:  (𝑡,
𝑡2

−4(𝑝)
+ 𝑟),  

where (p) = (r: 
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

2
) of discovery circle. 

• Solution curves for roots of magnitude:   

{𝑡, (𝑡𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑟𝑜𝑜𝑡𝑖𝑛𝑑𝑖𝑐𝑒/∓2) ± (𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒/2)} 

 

  

discovery curve 
magnitude

2

definition curve magnitude

abscissa definition 2
4

solution curves 

2
4
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Figure 6: Curved Space Construction for √2
4

. 
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ParametricPlot[{{
8

2
Cos[𝑡],

8

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
8
2)

+
8

2
}, {𝑡,

𝑡3

−2
+

8

2
}, 

{𝑡,
𝑡3

+2
−

8

2
}, {√8

3
, 𝑡}}, {𝑡, −3𝜋, 3𝜋}, PlotRange → {{−4,9}, {−6,6}}, 

 

Curved space construction of(√8
3

); to see the changing shape of solution curves 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solution curves

solution curves

abscissa definition 8
3

discovery curve 

definition curve 
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6

Figure 7: Curved Space Construction for √8
3

. 
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Curved space construction of (√3
5

); to see the changing shape of odd indices solution 

curves. 

ParametricPlot[{{
3

2
Cos[𝑡],

3

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
3
2
)

+
3

2
}, {𝑡,

𝑡5

−2
+

3

2
}, {𝑡,

𝑡5

+2
−

3

2
}, 

{√3
5

, 𝑡}}, {𝑡, −3𝜋, 3𝜋}, PlotRange → {{−4,4}, {−2,2}}, AxesOrigin−> {0,0}] 

 

Note: solution curves always pass through independent (
𝜋

2
;  90°; 𝑁) & 

(
3𝜋

2
; 270°; 𝑆) spin vertex of CSDA parametric geometry construction with flatline 

(zero slope). Square space math zero’s a polynomial to find roots, curved space 

zeroes slope. The spin 

angles of a CSDA 

sphere are vertices N 

& S. N is (π/2), and S 

is (
3𝜋

2
).  

Rotation diameter 

end points also have 

definition. Rotation 

diameter of a CSDA is 

found as chord of the 

dependent parabola 

curve. Its parametric 

geometry name is the 

system Latus Rectum 

parabola chord with 

ends E & W. W is (π; 

180°) and E is (0°or 2π; 360°). 

These four radian angles are the only radian description used by the Sandbox. 

Spin: N: (π/2 = 90°); S: (
3𝜋

2
= 270°).  Rotation: W: (π = 180°); E: (0°or 2π; 360°). 

 

Figure 8: Curved Space Construction for √3
5

. 
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EVEN INDICES √2
4

 

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}, {√2

4
, 𝑡}, {−√2

4
, 𝑡}, {𝑡,

𝑡4

−2
+

2

2
}, 

{𝑡,
𝑡4

+2
−

2

2
}}, {𝑡, −𝜋, 𝜋}, PlotRange → {{−3,3}, {

−3

2
,
3

2
}}] 

even indices seem to 

favor two root abscissa 

ID. One on negative side 

of discovery curve and 

one on the positive side.  

 

 

 

ODD INDICES: seem to favor root abscissa ID on the positive side of discovery 

spin.                                                                                     

on signing CSDA spin-

rotation space: 

Positive (y) is positive side of 

rotation. 

Negative (y) is negative side 

of rotation. 

Negative (x) is negative side 

of spin. 

Positive (x) is positive side of 

spin. 

 

Figure 10: CSDA construction defining shape of odd indices. 

Figure 9: CSDA curved space construction of even indices for roots of magnitudes. 
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PART 2: LINES of CURVED SPACE and SQUARE SPACE and philosophy of 

CURVED SPACE CENTER of CURVATURE and RADIUS of  CURVATURE  

The first line was a Euclidean definition, uniquely defined by two endpoints. 

A        B  (shortest distance between two points). 

A Euclidean line has no width, has meter of length only: 𝐴𝐵 ⃡     

A CSDA curved space line also has two endpoints. Curvature and radius of that 

curvature, two endpoints presenting two viewpoints residing opposite each other, 

positioned from, across, and separated by two infinities. Radius, a conceptual 

length we can hold and measure populates macro infinite space; curvature, the 

inverse of radius, is a number only and has residence confined to the micro 

infinity space. Curvature evaluation does carry an assignment; center of 

curvature, when discovering radius of curvature in coutless imagined curves of 

our space.  

I refer to Connecting Principal of a CSDA when studying Natural curves and lines 

constructing roots for CSDA Analytics. 

Center of Curvature and radii of curvature are linear endpoints in a unit relative 

curved space. By unit relative I mean (𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 (
𝜋

2
)  𝑠𝑝𝑖𝑛 = 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 (𝑝)) 

Euclid’s line, when defining radii, begins with center and origin of square space. 

Center of curvature and radius of curvature, when considered as curved space 

definition of a circles curvature and radius are not the same as a square space (r). 

 Circle 

radius unit 

meter  

Curvature 

evaluation  

Centering 

radius of 

curvature  

Radius of 

curvature  

Linear length 

radii square 

space  

Linear length 

curved space  

Square 

space 

2 1/2 Origin  2 2units  

 3 1/3 Origin 3 3units  

 1/3 3 Origin 1/3 1/3unit  

Curved 

space  

2  1/2 2 
(2 −

1

2
=

3

2
) (

3

2
)unit  

 3  1/3 3 
(3 −

1

3
=

5

3
) (

5

3
)unit  
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PROPRTIES OF CURVED SPACE DIVISION ASSEMBLY (CSDA©): 

Principal of linear radii and curvature relativity. For any radius 

of curvature (r) produced in the macro infinity there can exist 

one and only one inverse representation of this radius as curvature 

in the micro infinity. Micro infinity evaluation of curvature and 

radius will be [(1/r)-1 = r]. 

 

 

Figure 11: Euclid’s divisor determines unit meter ‘one’ of a CSDA number line. 

 

 

 

  

micro INF

macro INF unit 1

macro INF unit 2

macro INF unit 3

1

unit n

Euclidean Divisor of Magnitude

1 1 2 3

1.0

0.5

0.5

1.0

1.5

2.0

Euclid’s divisor splits 

magnitude into two parts 

finding a unit circle radius 

for division of magnitude 

space with a CSDA©. 

Micro infinity holds the 

set of all inverse integers 

from center to unit circle 

circumference defined 

with Euclid’s divisor. 

Macro infinity holds the 

set of all integers from 

unit circle circumference 

and beyond. 
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From 2013 MATHFEST, HARTFORD CONNECTICUT  

CONNECTING PRINCIPAL BETWEEN CURVED SPACE AND SQUARE SPACE: 
For any radius of curvature (r) produced in the macro 

infinity there can exist one and only one inverse 

representation of this radius as curvature in the micro 

infinity.  

Micro infinity evaluation of curvature and radius will 

be [(1/r)
-1

 = r]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 12: when a line 3 units long is divided into thirds, using Euclidean division, we have an ‘inverse’ of 
multiplication. A series of nine division diagonals producing a nine-unit space square. It is with this square I construct 
a central relative curved space centering function using two Euclidean curves. A circle and a parabola to read 
curvature and radius of curvature connection principal, to meter square space using curves by creating a linear view 
connecting micro (curvature) and macro (radius) infinities.   
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ParametricPlot[{{
7

2
Cos[𝑡],

7

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
7
2
)

+
7

2
}, {𝑡, (

𝑡8

−2
+

7

2
)}, {𝑡, (

𝑡8

+2
−

7

2
)}, 

{√7
8

, 𝑡}, {−√7
8

, 𝑡}}, {𝑡, −8,8}, PlotRange−> {{−7,7}, {−4,4}}, AxesOrigin−> {0,0}] 

 

CSDA curved space analytic construction of curvature and radii of space 

curves having roots born of even integer indices. (√7
8

) radius view. 

(√7
8

) CSDA curved space radii evaluation of even indices roots of magnitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When dependent part of solution curves become inversed  

{𝑡, (
𝑡8

−2
+

7

2
)

−1

}, {𝑡, (
𝑡8

+2
−

7

2
)

−1

}, solution curves suffer shape change; going from radii 

endpoint view to an inverse viewpoint, with respect to curvature, looking out to 

macro infinity along the CSDA inverse connector. Picture the same mechanical 

philosophy of an inverted image presented to our brain by our eyes. The parabolic 

shaped curves fly apart, becoming asymptotic with respect to abscissa definition 

±√7
8

. Only dependent parts of solution curves are inversed. 

{𝑡, (
𝑡8

±2
∓

7

2
)−1}, 

Figure 13: CSDA construction {√7
8

, 𝑡}. (work curvature.nb) 

7
8

, t , 7
8

, t

7

2
Cos t ,

7

2
Sin t

t ,
t2

4
7

2

7

2

t ,
t8

2

7

2

t ,
t8

2

7

2

independent curve 

dependent curve 

solution curve 

abscissa definition 

solution curve 

N

S

6 4 2 2 4 6

4

2

2

4
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 Both solution curves {𝑡, (
𝑡8

−2
+

7

2
)−1}, {𝑡, (

𝑡8

+2
−

7

2
)−1}, positive and negative, when 

inversed, are forbidden asymptote crossover (to reach rotation plane) defined by 

the independent red line curvature definition {𝑡, (
7

2
)

−1

} provided by the  

independent curve {
7

2
Cos[𝑡],

7

2
Sin[𝑡]}. Note; inversed main body solution curves 

flatline when meeting linear curvature limits provided by independent discovery 

curves.  

The main body solution curves, both red and blue, are forever trapped between 

(±) abscissa ID of the root definition and linear curvature value of independent 

discovery curve. Note disassociation of solution curve character composition. 

Signed (+& −) parts composing solution curves, when inversed, disassociate 

from main body of curve, keeping (+& −) spirit from main body character. (−) 

spirit of main body (red solution) approach the rotation plane from(−𝑠𝑝𝑖𝑛 ∞), 

outside asymptote frame (±𝑟𝑜𝑜𝑡 𝑎𝑏𝑠𝑐𝑖𝑠𝑠𝑎 𝐼𝐷) . Once crossing the independent 

red line curvature definition {𝑡, − (
7

2
)

−1

, turn to follow like signed rotation infinity, 

with respect to which side of abscissa ID red main body spirits arrive at rotation .  

Figure 14: Sandbox construction of inversed solution curves for {√7
8

, 𝑡} curvature view. (work curvature.nb) 

abscissa ID

dependent curve

independent curve

solution curve N

solution curve S

7

2
Cos t ,

7

2
Sin t

t ,
t2

4 7

2

7

2

t ,
t8

2

7

2

1

, t ,
t8

2

7

2

1

,

7
8

, t , 7
8

, t

independent curvature 

evaluations 

t ,
7

2

1

N

S

6 4 2 2 4 6

4

2

2

4
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(−𝑠𝑝𝑖𝑛 ∞) has the main body blue solution curve vertex, spin axis centered. The 

positive solution curve is forbidden crossing the independent curvature definition 

{𝑡, − (
7

2
)

−1

, and is protected with (±) root ID as asymptote insulator, keeping 

negative slope of red solution curve isolated from the positive slope character  

composing the blue (S) main body solution curve.  

(±) spirit of main body (blue solution) approach rotation from (+ 𝑠𝑝𝑖𝑛 ∞) along 

(±𝑟𝑜𝑜𝑡 𝑎𝑏𝑠𝑐𝑖𝑠𝑠𝑎 𝐼𝐷), Once crossing the independent curvature ID definition 

{𝑡, + (
7

2
)

−1

, turn to follow like signed rotation infinity.  

Main body solution curve spirit parts become disassociated from main body 

curves when dependent composition of main body is inversed.  (±) parts of both 

main body solution curve composition, become asymptotic with plane of rotation 

and root abscissa identity. They cling close to main body solution curve of 

opposite character, (−) spirit of red main body solution curve next to blue body 

curve, and (+) spirit of main body blue solution curve next to red body curve. 

Close, but forever asymptoticly apart. 

I sign the spirit of solution curves with this arbitrary convention. The solution 

curve touching (
𝜋

2
) spin vertex is (negative) because the unit parabola at this 

vertex is a negative slope 1st quadrant curve. The curve touching the (
3𝜋

2
) spin is a 

4th quadrant positive slope curve.  
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QED: Even indices solution curves and their inverse. 

ALΣXANDΣR 

  

Figure 16: CSDA inverse of red body solution curve (curvature viewpoint). (work curvature.nb) 

Figure 15: CSDA inverse of blue body solution curve (curvature viewpoint). (work curvature.nb) 
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ParametricPlot[{{
7

2
Cos[𝑡],

7

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
7
2)

+
7

2
}, {𝑡, (

𝑡7

+2
−

7

2
)}, {𝑡, (

𝑡7

−2
+

7

2
)}, 

{√7
7

, 𝑡}, {−√7
7

, 𝑡}}, {𝑡, −8,8}, PlotRange−> {{−7,7}, {−4,4}}, AxesOrigin−> {0,0}] 

 

CSDA construction curvature and radii of curves of roots having odd 

integer indices. 

(√7
7

) square space curve analytics (radius view) of inverse square connector. 

 

 

 

 

 

 CSDA macro space odd indices radii connection sketch unidirectional solution 

curves, approach CSDA parametric geometry function along negative side of spin 

infinity along positive side of negative abscissa root ID. When crossing over to 

positive side of spin space, they flatline at N & S vertices before diving toward 

root definition on rotation plane. Root definition happens on positive side of spin. 

Both curves continue unidirectional on CSDA positive spin side, crossing over to 

like signed spin infinities on positive side of root abscissa ID with respect to 

rotation. Negative red on to (− 𝑠𝑝𝑖𝑛 ∞) and positive blue on to (+ 𝑠𝑝𝑖𝑛 ∞). 

 

Figure 17: CSDA macro space radii evaluation of roots having odd indices: {√7
7

, 𝑡}, {−√7
7

, 𝑡}. (work curvature.nb) 
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(√7
7

) curved space curve analytics (curvature view) of inverse square connector. 

ParametricPlot[{{
7

2
Cos[𝑡],

7

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
7
2
)

+
7

2
}, {𝑡, (

𝑡7

+2
−

7

2
)

−1

}, {𝑡, (
𝑡7

−2
+

7

2
)

−1

}, 

{√7
7

, 𝑡}, {−√7
7

, 𝑡}, {𝑡, (
7

2
)−1}, {𝑡, −(

7

2
)−1}, {141 7⁄ , 𝑡}}, {𝑡, −8,8}, PlotRange−> {{−7,7}, {−4,4}}, AxesOrigin−> {0,0}] 

 

Both square space unidirectional solution curves (±) character spirit are split from 

the inversed main body curve.  

The up-spin spirit of red main body solution curve approach rotation from 

(−𝑠𝑝𝑖𝑛 ∞) alongside positive root abscissa ID asymptote, turns right (eye sight 

into paper) and recedes to positive rotation infinity.  

The down-spin spirit of red main body solution curve approaches rotation along 

negative side of positive abscissa root ID from (+𝑠𝑝𝑖𝑛 ∞). Upon reaching the 

positive independent curvature limit (
7

2
)

−1
, the curve flatlines, turns left, (eye 

sight into paper), and collapses onto rotation plane just past negative root ID, and 

recedes out to negative infinite square space rotation.  

Figure 18: curved space view of inversed odd indices. Odd indices of square space radii produce unidirectional solution curves. 

Change shape and asymptote when inversed: {𝑡, (
𝑡7

+2
−

7

2
)

−1

}, {𝑡, (
𝑡7

−2
+

7

2
)

−1

} 
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The down-spin spirit of blue main body solution curve approach rotation from 

(+𝑠𝑝𝑖𝑛 ∞) along positive side of positive root abscissa ID asymptote, turns right 

(eye sight into paper) and recedes to positive rotation infinity. 

 The up-spin spirit of main body blue solution curve approaches rotation along 

negative side of positive abscissa root ID from (−𝑠𝑝𝑖𝑛 ∞). Upon reaching the 

negative independent curvature limit (
−7

2
)

−1
, the curve flatlines, turns left, (eye 

sight into paper), and collapses onto rotation plane just past negative root ID, and 

recedes out to negative infinite square space rotation.  

QED: Odd indices solution curves and their inverse. 

ALΣXANDΣR 

Since I have signed red main body solution curves negative and blue body solution 

curves positive; I propose the following convention. 

• Let curve direction point from infinite space to plane of rotation.  

• If on a positive spin axis, or relative spin asymptote, such a curve needs 

down spiral, down-spin, to arrive at rotation. 

• If on a negative spin axis, or relative spin asymptote, such a curve needs up 

spiral, up-spin, to reach rotation. 

• Those curves out in infinite space of rotation, also have direction toward 

spin. Signing is arbitrary as to side of spin and sides of relative spin 

asymptotes. Those curves approaching central spin or relative central spin 

asymptotes from (𝜋) 𝑠𝑝𝑎𝑐𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 with respect spin, come from 

negative (left-side) infinity and are negative. Those curves approaching 

central spin or relative central spin asymptotes from (2𝜋) 𝑠𝑝𝑎𝑐𝑒, come 

from positive (right-side) infinity and have positive spirit. 

Even indices root constructions, when inversed, produce 3 apparitions. The main 

body captured between root ID and curvature limits of discovery and two spirit 

outside capture zone. Odd indices suffering mechanical inverse, produce only two 

apparition. I suspect the curves suffering flatline curvature limits asymptote is 

main body, the one reaching rotation unimpeded, are odd indices spirit curves.  
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 PART3: Trancensdentals Indices { √2
𝜋

, 𝑡} 

ParametricPlot[{{
2

2
Cos[𝑡],

2

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
2
2
)

+
2

2
}, {𝑡,

𝑡𝜋

−2
+

2

2
}, {𝑡,

𝑡𝜋

+2
−

2

2
}, 

{ √2
𝜋

, 𝑡}}, {𝑡, −4,4}, PlotRange−> {{−3,3}, {−3,3}}, AxesOrigin−> {0,0}] 

 By (my own) convention, I use signing of dependent curve @ (
𝜋

2
) spin vertices 

(
+𝑡𝑛

−4(𝑝)
+ 𝑟). I also use color so as to follow spin vertex solution curves as we  

change constructed space view by inversing dependent parts of solution curves. 

We see (
𝜋

2
) spin vertex is primitive origin for red negative solution curve. 

We see (
3𝜋

2
) spin vertex is primitive origin for blue positive solution curve. 

Transcendental solution curves source from positive side of spin. negative 

solution exists above rotation and positive solution below rotation.  

Figure 19: transcendental root { √2
𝜋

, 𝑡}, macro space radii view. transcendental roots 1.nb 
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inverse curvature evaluation of transcendental { √2
𝜋

, 𝑡} 

Same convention. Red negative main body solution curve still sources from (𝑁;
𝜋

2
) 

spin vertex and blue positive main body solution curve still sources from (𝑆;
3𝜋

2
) 

spin vertex  

ParametricPlot[{{
2

2
Cos[𝑡],

2

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
2
2)

+
2

2
}, {𝑡, (

𝑡𝜋

+2
−

2

2
)

−1

}, {𝑡, (
𝑡𝜋

−2
+

2

2
)

−1

}, 

{ √2
𝜋

, 𝑡}}, {𝑡, −4,4}, PlotRange−> {{−7 2⁄ , 7 2⁄ }, {−7 2⁄ , 7 2⁄ }}, AxesOrigin−> {0,0}] 

 

Note: both main body solution curves still source from positive side of spin. 

Inversing solution curves;  {𝑡, (
𝑡𝜋

+2
−

2

2
)−1}, {𝑡, (

𝑡𝜋

−2
+

2

2
)−1}, causes (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  or 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) spirit 

carried by each main body curve, to become separated from primitive source point of origin. 

Both root solution curves source from (spin axis) vertices. When solution curves are inversed, 

the abscissa root ID becomes 

asymptotic keeping separate main body 

solution curves from acompanying spirit 

curves.  

Note distribution of spirit signing 

connected with inversed main body 

curve. Negative spirit south of rotation 

and positive spirit north of rotation. 

Blue spirit approach is from (+𝑠𝑝𝑖𝑛∞), 

turns right (eyesight into paper) and 

recedes to (+𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛∞). 

Red spirit approach is from (−𝑠𝑝𝑖𝑛∞), 

turns right (eyesight into paper) and 

recedes to (+𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛∞). 
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Figure 20: transcendental root { √2
𝜋

, 𝑡} inversed, micro space 

curvature view. transcendental roots 1.nb 
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CSDA demonstration ( √3
𝜋

) center of curvature to macro space radii evaluation 

ParametricPlot[{{
3

2
Cos[𝑡],

3

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
3
2
)

+
3

2
}, {𝑡, (

𝑡𝜋

−2
+

3

2
)}, {𝑡, (

𝑡𝜋

+2
−

3

2
)}, {𝑡,

2

3
}, {𝑡,

−2

3
}, 

{𝑡, (
𝑡𝜋

−2
+

3

2
)}, {𝑡, (

𝑡𝜋

+2
−

3

2
)}, { √3

𝜋
, 𝑡}}, {𝑡, −

7

2
,
7

2
}, PlotRange−> {{−

7

2
,
7

2
}, {−

5

2
,
5

2
}}, AxesOrigin−> {0,0}] 

 

Red is negative main body 

solution curve. 

Blue is positive main body solution 

curve  

Radicand number has been 

changed from (2) to (3) 

Root solution has become part of 

micro infinity discovery curve. 

Both main body solution curves 

still source from N&S discovery 

curve spin vertices. 

We see (
𝜋

2
) spin vertex is primitive 

origin for red negative solution curve. 

We see (
3𝜋

2
) spin vertex is primitive origin for blue positive solution curve. 

Transcendental solution curves source from positive side of spin. negative 

solution exists above rotation and positive solution below rotation.  
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Figure 21: : transcendental root { √3
𝜋

, 𝑡} macro space radii view. 

transcendental roots 1.nb 
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CSDA demonstration ( √3
𝜋

) Inversed Curvature view evaluation  

ParametricPlot[{{
3

2
Cos[𝑡],

3

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
3
2
)

+
3

2
}, {𝑡, (

𝑡𝜋

−2
+

3

2
)}, {𝑡, (

𝑡𝜋

+2
−

3

2
)}, {𝑡,

2

3
}, {𝑡,

−2

3
}, {𝑡, (

𝑡𝜋

−2
+

3

2
)

−1

}, 

{𝑡, (
𝑡𝜋

+2
−

3

2
)−1}, { √3

𝜋
, 𝑡}}, {𝑡, −

7

2
,
7

2
}, PlotRange−> {{−

7

2
,
7

2
}, {−

5

2
,
5

2
}}, AxesOrigin−> {0,0}] 

Abscissa ID { √3
𝜋

, 𝑡} and independent curve {3

2
Cos[𝑡],

3

2
Sin[𝑡] curvature limits {𝑡, 2

3
}, {𝑡,

−2

3
} are 

relative spin/rotation asymptotes of magnitude 3 inverse square connector. 

Solution curves still source from positive side of spin @ (
𝜋

2
 𝑎𝑛𝑑 

3𝜋

2
) vertices. But 

inversed solution 

curves source from 

positive side of spin @ 

(+ 𝑎𝑛𝑑 −) curvature 

evaluation of 

independent CSDA 

curve  

{
3

2
Cos[𝑡],

3

2
Sin[𝑡]} as 

relative rotation 

asymptotes. 

Positive spirit of blue 

main body solution 

curve approaches 

rotation plane from 

(+𝑠𝑝𝑖𝑛∞), turns right 

(eyesight into paper) and recedes to (+𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛∞). 

Red spirit approach is from (−𝑠𝑝𝑖𝑛∞), turns right (eyesight into paper) and 

recedes to (+𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛∞). 
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Figure 22: CSDA curved space parametric geometry construction for magnitude 

root { √3
𝜋

, 𝑡} inverse. Note inversed curves no longer source from spin vertices, 

but still source from positive side spin axis along curvature limits of 

independent central force curve. transcendental roots 1.nb 
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{√2
ⅇ

, 𝑡} 

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}, {𝑡, (

𝑡𝑒

−2
+

2

2
)}, {𝑡, (

𝑡𝑒

+2
−

2

2
)}, {√2

ⅇ
, 𝑡}}, {𝑡, −𝜋, 𝜋}, 

PlotRange−> {{−3,3}, {−2,2}}, AxesOrigin−> {0,0}] 

 

Exponential (e) as index for 

radicand (2) seems to 

possess same parameters 

as (π). 

 

 

 

 

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}, {𝑡, (

𝑡𝑒

−2
+

2

2
)

−1

}, {𝑡, (
𝑡𝑒

+2
−

2

2
)

−1

}, {√2
ⅇ

, 𝑡}}, {𝑡, −9,9}, 

PlotRange−> {{−3,3}, {−2,2}}, AxesOrigin−> {0,0}] 

lnversing 

Exponential (e) as 

index for radicand 

(2) seems to 

possess same 

parameters as (π) 

as index for 

radicand (2). 
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Figure 23: CSDA parametric geometry construction of transcendental {√2
ⅇ

, 𝑡}. transcendental roots 1.nb 
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ParametricPlot[{{
3

2
Cos[𝑡],

3

2
Sin[𝑡]}, {𝑡,

𝑡2

−4(
3

2
)
+

3

2
}, {𝑡, (

𝑡ⅇ

−2
+

3

2
)}, {𝑡, (

𝑡ⅇ

+2
−

3

2
)}, {𝑡,

2

3
}, {𝑡,

−2

3
}, {𝑡, (

𝑡ⅇ

−2
+

3

2
)}, 

{𝑡, (
𝑡𝑒

+2
−

3

2
)}, {√3

ⅇ
, 𝑡}}, {𝑡, −

7

2
,
7

2
}, PlotRange−> {{−

7

2
,
7

2
}, {−

5

2
,
5

2
}}, AxesOrigin−> {0,0}] 

 

{√3
ⅇ

, 𝑡}} Exponential (e); 

transcendental sameness. 

 

 

 

 

 

 

 

 

 

 

ParametricPlot[{{
3

2
Cos[𝑡],

3

2
Sin[𝑡]}, {𝑡,

𝑡2

−4 (
3
2
)

+
3

2
}, {𝑡, (

𝑡𝑒

−2
+

3

2
)}, {𝑡, (

𝑡𝑒

+2
−

3

2
)}, {𝑡,

2

3
}, {𝑡,

−2

3
}, {𝑡, (

𝑡𝑒

−2
+

3

2
)

−1

}, {𝑡, (
𝑡𝑒

+2
−

3

2
)

−1

}, 

{√3
ⅇ

, 𝑡}}, {𝑡, −
7

2
,
7

2
}, PlotRange−> {{−

7

2
,
7

2
}, {−

5

2
,
5

2
}}, AxesOrigin−> {0,0}] 

 

(√3
ⅇ

)
−1

 

exponential (e) 

transcendental sameness. 

Note main body solution 

curves source from 

discovery curve curvature 

limits. 
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Figure 26: CSDA parametric geometry construction of transcendental {√3
ⅇ −1

, 𝑡} 

inverse. transcendental roots 1.nb 

Figure 25: CSDA parametric geometry construction of transcendental {√3
ⅇ

, 𝑡} 

transcendental roots 1.nb 
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transcendental index for radicand (8) 

ParametricPlot[{{
8

2
Cos[𝑡],

8

2
Sin[𝑡]}, {𝑡,

1

4
}, {𝑡,

−1

4
}, {𝑡,

𝑡2

−4 (
8
2
)

+
8

2
}, {𝑡, (

𝑡𝜋

−2
+

8

2
)

−1

}, {𝑡, (
𝑡𝜋

+2
−

8

2
)

−1

}, { √8
𝜋

, 𝑡}}, 

{𝑡, −9,9}, PlotRange−> {{−10,10}, {−6,6}}, AxesOrigin−> {0,0}] 

Even indices have negative and positive abscissa root identification. Curvature 

limits of discovery become relative rotation asymptotes. Root abscissa identities 

become relative spin asymptotes. Together, they give a precise infinite volume of 

operating space for F. 

Odd indices use the positive abscissa root ID as relative spin asymptote. curvature 

limits of discovery are relative rotation asymptotes. 
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Figure 27: CSDA curved space construction of transcendental inversed root { √8
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, 𝑡} 



Sand Box Geometry (elementary central force field code) Page 30 

 

This page left blank for future consideration and editing of transcendental roots.  
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Part 4 

Phylosphical inquiry into interger radicand description of a centrist philosophy for 

constructing roots of magnitude for, 1-space, 2-space, 3-space, and 4-space.  

When constructing roots of space curve magnitudes, I find no discernible 

change when conducting indices on radicand two. All root solutions 

(red&blue) source from CSDA spin axis N&S. I intend to use radicand (2) 

as descriptor of Natural 2-space central force construction. Background of 

such a construction is Cartesian. Let the origin be central force F. let 

(
𝜋

2
&

3𝜋

2
) direction radii spin, and (𝜋&2𝜋) direction radii rotate.  

   ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}, {𝑡,

𝑡2

+4(1)
− 1}, {√2

1
, 𝑡}, {𝑡,

𝑡1

−2
+

2

2
}, {𝑡,

𝑡1

+2
−

2

2
}, 

{𝑡, (
𝑡1

+2
−

2

2
)−1}, {𝑡, (

𝑡1

−2
+

2

2
)−1}, {𝑡, 1}, {𝑡, −1}}, {𝑡, −𝜋, 𝜋}, PlotRange → {{−3,3}, {

−3

2
,
3

2
}}] 

• {𝑡,
𝑡1

−2
+

2

2
}, {𝑡,

𝑡1

+2
−

2

2
}. Negative and positive main body solution curves. Macro space 

radii into micro infinity curvature. Linear view into curved space . 

• {𝑡, (
𝑡1

+2
−

2

2
)−1}, {𝑡, (

𝑡1

−2
+

2

2
)−1}. Inversed main body curves; curvature view out to macro 

space radii. Curves on negative side of spin in curved space become linear when rotation 

happens on square space side of spin.   

Figure 28: CSDA parametric geometry construction of 1st index linear (degree 1) root of Natural 2-space. Scratch curves.nb 
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Degree two (index 2) rotation magnitude root of Natural 2-space  

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}, {𝑡,

𝑡2

+4(1)
− 1}, {√2

2
, 𝑡}, {𝑡,

𝑡2

−2
+

2

2
}, 

{𝑡,
𝑡2

+2
−

2

2
}, {𝑡, (

𝑡2

+2
−

2

2
)−1}, {𝑡, (

𝑡2

−2
+

2

2
)−1}}, {𝑡, −𝜋, 𝜋}, PlotRange → {{−3,3}, {

−3

2
,
3

2
}}]  

• {𝑡,
𝑡2

−2
+

2

2
}, {𝑡,

𝑡2

+2
−

2

2
}. Main body solution curve (−𝑟𝑒𝑑 𝑎𝑛𝑑 + 𝑏𝑙𝑢𝑒). 

• {𝑡, (
𝑡2

+2
−

2

2
)−1}, {𝑡, (

𝑡2

−2
+

2

2
)−1}. Main body curves inversed. We see three dissociation of 

main body solution. Main body inverse appears at spin axis. Red (−) inverse at N spin 

vertex and blue (+) inverse at S spin vertex. Both curves have vertices touching 

curvature evaluation. I did not construct the discovery curve limits, they are spin vertex 

tangent, normal with spin axis. The parametric discription will be  

• Negative inverse: {𝑡, 1}. This is (+) curvature limit of discovery curve; red body inverse 

is forbidden contact with rotation plane. Its vertex opens out to positive spin infinity. 

• Positive inverse: {𝑡, −1} This is (−) curvature limit of discovery curve; blue body inverse 

is forbidden contact with rotation plane. Its vertex opens out to negative spin infinity. 

• We have two spirits for each main body. (+) spirit parts above rotation and negative 

spirit parts below rotation. 

 

 

Figure 29: CSDA curved space construction of 2-space rotation magnitude, ±√2
2

 solution curves and their inverse. 
(Scratch curves.nb) 
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Degree three (index 2) rotation magnitude root of Natural 2-space  

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}, {𝑡,

𝑡2

+4(1)
− 1}, {√2

3
, 𝑡}, {𝑡,

𝑡3

−2
+

2

2
}, {𝑡,

𝑡3

+2
−

2

2
}, 

{𝑡, (
𝑡3

+2
−

2

2
)−1}, {𝑡, (

𝑡3

−2
+

2

2
)−1}}, {𝑡, −3𝜋, 3𝜋}, PlotRange → {{−5,7}, {−3,7}}]  

 

Solution curves and their inverse touch discovery curve (N&S) spin vertices. 

Inversed curves, spirit and main body become asymptote sensitive with rotation 

and abscissa ID of root √2
3

. One root and one abscissa root ID with degree 3 

exponents.   

 

  

Figure 30: CSDA construction of √2
3

 central force rotation magnitude. (space roots.nb) 
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Index 4 

ParametricPlot[{{Cos[𝑡], Sin[𝑡]}, {𝑡,
𝑡2

−4(1)
+ 1}, {𝑡,

𝑡2

+4(1)
− 1}, {√2

4
, 𝑡}, {𝑡,

𝑡4

−2
+

2

2
}, {𝑡,

𝑡4

+2
−

2

2
}, 

{𝑡, (
𝑡4

+2
−

2

2
)−1}, {𝑡, (

𝑡4

−2
+

2

2
)−1}}, {𝑡, −𝜋, 𝜋}, PlotRange → {{−3,3}, {

−3

2
,
3

2
}}] 

  I find no conclusive evidence that time is the 4th dimensional creature we suspect it to be. At least not in our 

mathematical (exponent) sense. I lay out degree of exponent, as described by Gauss, quantifying a numerical 

solution for roots. 

Degree 1. Linear space. No exponents greater than 1 will return 1 solution. 

Degree 2. The first space curve, pretty much explored by Galileo and Calculus of Leibniz and Sir Isaac. No 

exponents greater than 2 will return 2 solution. 

Degree 3. Cubic 3-dimensional space. Up, down, and around. Spin rotation geometry of a CSDA. No exponents 

greater than 3 will return 3 solution. 

Degree 4. Just another exponent. 

As to time being the 4th dimension, dimension of what? We know time is an operator, a collection of frames, how 

many how fast? A mouse dancing on a pad? A bullet shearing a playing card length wise? 

I say let time operate as a concept member of the word continuum, a complicated concept.  

TIME & DEGREE EXPONENT  
Degree 1. Sir Isaac’s 1st law. A ball bearing set in motion will travel a straight line till stopped by time. 

Degree 2. Galileo found that things fall with change of space per unit time dependent on central force G-field 

acceleration. Terminal velocity tells us how much time to impact. 

Degree 3. 3 space motion vectors of Frenet. (v) tangent normal to orbit curve; (a) acceleration force connecting M2 

with M1. And torque; changing 3-space orbit curves by altering velocity with changing acceleration per unit time. 

Degree 4. (?)  

Figure 31: CSDA curved space construction of degree 4 root on central force rotation magnitude. (space roots.nb) 



Sand Box Geometry (elementary central force field code) Page 35 

COPYRIGHT ORIGINAL GEOMETRY BY  

Sand Box Geometry LLC, a company dedicated to utility of Ancient Greek 

Geometry in pursuing exploration and discovery of Central Force Field Curves.  

Using computer parametric geometry code to construct the focus of an 

Apollonian parabola section within a right cone.  

 “It is remarkable that the directrix does not appear at all in Apollonius great treatise on conics. 

The focal properties of the 

central conics are given by 

Apollonius, but the foci are 

obtained in a different way, 

without any reference to the 

directrix; the focus of the 

parabola does not appear at all... 

Sir Thomas Heath: “A HISTORY 

OF GREEK MATHEMATICS” page 

119, book II. 

 

Utility of a Unit Circle and 

Construct Function Unit 

Parabola may not be used 

without written permission 

of my publishing company 

Sand Box Geometry LLC      Alexander; CEO and copyright owner.  
alexander@sandboxgeometry.com  

The computer is my sandbox, the unit circle my compass, and 

the focal radius of the unit parabola my straight edge. 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

 

mailto:alexander@sandboxgeometry.com
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The square space hypotenuse of Pythagoras is the secant connecting (π/2) spin 

radius (0, 1) with accretion point (2, 0). I will use the curved space hypotenuse, 

also connecting spin radius (π/2) with accretion point (2, 0), to analyze g-field 

energy curves when we explore changing acceleration phenomena. 

 

Figure 32: CSDA demonstration of a curved space hypotenuse and a square space hypotenuse 
together. 

We have two curved space hypotenuses because the gravity field is a symmetrical 

central force, and will have an energy curve at the N pole and one at the S pole of 

spin; just as a bar magnet. When exploring changing acceleration energy curves of 

M2 orbits, we will use the N curve as our planet group approaches high energy 

perihelion on the north time/energy curve.  

ALΣXANDΣR 
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