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Using Mathematica and Cartesian Coordinates to construct an 

Apollonian parabola section onto a cone surface with parametric 

based computer geometry. 

STEP 1. Construct a cone central axis with generator slope (±2). Set cone nappe 

below horizontal axis to aquire traditional view. 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑙𝑜𝑡[{{𝑡, 2𝑡}, {𝑡, −2𝑡}}, {𝑡, −𝜋, 𝜋}, 

𝑃𝑙𝑜𝑡𝑅𝑎𝑛𝑔𝑒−> {{−2,2}, {−5/2,1/2}}] 

  

 

 

 

 

 

 

 

 

 

  

2 1 1 2

2.5

2.0

1.5

1.0

0.5

0.5

Figure 1:  lower nappe of slope (m = 2) cone. 



SAND BOX GEOMETRY (finding a unit parabola CSDA) Page 3 

 

STEP 2. Construct the unit circle diameter. 

SBG theorem: When cone altitude (A) is numerically congruent with slope (m) we 

have a unit circle diameter. ∴ unit circle parametric diameter will be {t, -2}. 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑙𝑜𝑡[{{𝑡, 2𝑡}, {𝑡, −2𝑡}, {𝑡, −2}}, {𝑡, −𝜋, 𝜋}, 

𝑃𝑙𝑜𝑡𝑅𝑎𝑛𝑔𝑒−> {{−2,2}, {−9/2,1/2}}] 

 

 

 

Go down 2 cone units to find a unit 

circle diameter constructed within a 

slope (𝑚 = 2) cone.  
1, 2
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Figure 2: finding a unit circle conic diameter. 
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STEP 3. Mapping a parabola principal axis onto a cone with section vertex on a 

unit circle diameter: position the parabola section vertex at Cartesian Coordinate 

(point (1, -2)). 

𝑆𝑜𝑙𝑣𝑒[𝑦 − (−2) == 2(𝑥 − 1), 𝑦] = {𝑦 → 2(−2 + 𝑥)} 

𝑐𝑜𝑛𝑣𝑒𝑟𝑡 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (2(−2 + 𝑥)) 𝑡𝑜 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛
𝑦𝑖𝑒𝑙𝑑𝑠
→    {𝑡, −4 + 2𝑡} 

 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑙𝑜𝑡[{{𝑡, 2𝑡}, {𝑡, −2𝑡}, {𝑡, −2}, {𝑡, −4 + 2𝑡}}, 
{𝑡, −𝜋, 𝜋}, 𝑃𝑙𝑜𝑡𝑅𝑎𝑛𝑔𝑒−> {{−2,2}, {−9/2,1/2}}] 

 

 

A cone parabola section will have 

its principal axis parallel with one 

and only one generator. Let the 

section vertex be generator (
𝜋

2
). 

Construct relative with generator 

(
3𝜋

2
); parametric {𝑡, 2𝑡}. This 

construction will set the parabola 

vertex at the positive endpoint 

profile view unit circle diameter. 

Using the section vertex (1,−2) as 

point of reference and opposing 

generator {𝑡, 2𝑡} as slope, a linear 

point slope description of the 

apollonian section parabola 

principal axis can be found.  

convert the algebraic solution to 

parametric description and post to 

the construction. The sections principal axis is in red. 

  

1, 2

PARABOLA PRINCIPAL AXIS
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Figure 3: finding a parabola section principal axis. 
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STEP 4. Construct the parabola focal axis. 

SBG Theorem: every parabola focal axis is normal to the parallel generator {𝑡, 2𝑡} 

and will pass through unit circle diameter center. (unit circle center is (0, -2)). 

𝑆𝑜𝑙𝑣𝑒[𝑦 − (−2) == −(2) − 1(𝑥 − 0), 𝑦]
𝑦𝑖𝑒𝑙𝑑𝑠
→    {{𝑦 →

1

2
(−4 − 𝑥)}} 

Convert algebra (
1

2
(−4 − 𝑥)) to parametric description; {𝑡, 1/2 (−4 − 𝑡)} 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑙𝑜𝑡[{{𝑡, 2𝑡}, {𝑡, −2𝑡}, {𝑡, −2}, {𝑡, −4 + 2𝑡}, 

{𝑡, 1/2 (−4 − 𝑡)}}, {𝑡, −𝜋, 𝜋}, 𝑃𝑙𝑜𝑡𝑅𝑎𝑛𝑔𝑒−> {{−2,2}, {−9/2,1/2}}] 

 

Using the section vertex (1,−2) as 

point of reference and opposing 

generator {𝑡, 2𝑡} as slope, a linear 

point slope description of the 

apollonian section parabola principal 

axis can be found.  convert the 

algebraic solution to parametric 

description and post to the 

construction. the sections principal 

axis is in red, focal axis is blue. 

The ancients described the earliest parabola 

as the section with its principal axis normal 

with a right cone generator legs having 

slope (m = ±1). This concept is correct for 

every parabola section of any cone slope 

when the focal axis is made normal with the 

opposite parallel generator following the section principal axis. To find the focal axis parameter 

use the center of the diameter holding the vertex as point of reference for point slope 

description. Every parabola focus can be found at the intersection of the principal axis and focal 

axis. Next we find the neighborhood of (p) to determine size of the LATUS RECTUM. 

1, 20, 2

PRINCIPAL AXIS

FOCAL AXIS

2 1 1 2

4

3

2

1

Figure 4: Constructing the focal axis. 
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STEP 5. Next we determine how far the vertex is from the parabola section focus 

which is the initial focal radius by constructing the neighborhood of (p). 

SBG Theorem: That line from the section focus to the curve’s vertex will be the 

curve’s initial focal radius (p) and have magnitude (
𝐴

𝑚2√
1+𝑚2

𝑚2

) where (A = 

altitude) and (m = cone slope). 
2

4√
5

4

𝑦𝑖𝑒𝑙𝑑𝑠
→    

1

√5
= {

1

√5
Cos[𝑡] + 1,

1

√5
Sin[𝑡] − 2}  

Neighborhood of (p) centered around vertex:  

 

ParametricPlot[{{𝑡, 2𝑡}, {𝑡, −2𝑡}, {𝑡, −2}, {𝑡, −4 + 2𝑡}, {𝑡,
1

2
(−4 − 𝑡)}, 

{
1

√5
Cos[𝑡] + 1,

1

√5
Sin[𝑡] − 2}}, {𝑡, −𝜋, 𝜋}, PlotRange → {{−2,6}, {

−9

2
,
1

2
}}] 

 

With the section vertex location known, 

we can construct the “neighborhood of 

(p)”. Where the neighborhood meets the 

principal and focal axis will lie the section 

latus rectum (4p) into the paper. The focus 

of the apollonian section is center to focal 

chord latus rectum. the value of (p), the 

sections initial focal radius, will run 2(p) +/- 

each way, into and out of the paper. 

  

vertex

focus

p  
1

5
  line from 

vertex to focus 

NEIGHBORHOOD 

OF p

2 2 4 6

4

3

2

1

Figure 5: Constructing the neighborhood of (p). 
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STEP 6. Determine location of the section focus to realize latus rectum center.   

To find the ABSCISSA, set dependent axis parameters = to each other.  

𝑆𝑜𝑙𝑣𝑒[1/2 (−4 − 𝑡) == −4 + 2𝑡, 𝑡] = {𝑡
𝑦𝑖𝑒𝑙𝑑𝑠
→    4/5} 

To find the ORDINATE set abscissa into either axis. 

1

2
(−4 − 𝑡)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑡) 𝑔𝑜𝑒𝑠 

4

5
=  −(12/5) 

LOCATION OF FOCUS  = (4/5,−12/5). 
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STEP 7. Next we determine the size of the diameter holding the curves focus. The 

ordinate of the section focus (4/5,−12/5) is the new altitudinal level of the focal 

diameter. Use (A/m) to find the new radius and diameter of the section focus. 

12

5

2
= 

6

5
. Radius = (6/5) and diameter = (12/5). 

Altitude of focal diameter theorem: change of parabola section vertex altitude to 
focal altitude 

 =  (𝐴/(𝑚2 + 1))  =  2/5. 
 

Change unit circle altitude placement from (2 units) to (10/5 units); we have: 

 NEW ALTITUDE = (unit diameter altitude + change in altitude = new diameter.  

∴  10/5 + 2/5 = (12/5). 
 

NEW DIAMETER RADIUS = 6/5 units. 

 Using proportional chord theorem, we find latus rectum chord, where (b) is 

a right triangle altitude chord (see step 8).   

Solve [(
10

5
∗
2

5
) == 𝑏2, 𝑏] =  (𝑏 →

2

√5
) 

this is half the latus rectum chord:  
2

√5
∗ 2 =  

4

√5
= latus rectum chord. 
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STEP 8. To confirm meter of the curves Latus Rectum, use the focus location 

constructed with the (Z) axis view into the paper. Let the section latus rectum be 

(𝐺𝐻) and be parallel with x-axis. Let the (y-axis) be (
12

5
) diameter normal with (x-

axis). Parts; (y-axis) are (𝑎𝑏𝑠 (
−6

5
) +

4

5
+
2

5
) =  

12

5
. Using intersecting chord 

theorem from plane geometry:  

                              (𝑎𝐹) ∗ (𝐹𝑏) = (𝐺𝐹2)  
𝑦𝑖𝑒𝑙𝑑𝑠
→    √(

6

5
+
4

5
) ∗ (

2

5
) = 

2

√5
=
LR

2
. 

 

LATUS RECTUM =  2 ∗
2

√5
= 

4

√5
 

. 
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑙𝑜𝑡[{{6/5 𝐶𝑜𝑠[𝑡],6/5 𝑆𝑖𝑛[𝑡]}, {4/5, 𝑡}}, 
{𝑡, −2𝜋, 2𝜋}, 𝑃𝑙𝑜𝑡𝑅𝑎𝑛𝑔𝑒−> {{−3/2,3/2}, {−3/2,3/2}}] 

 

 

 

Chord (GH) is the focal 

chord Latus Rectum of 

the section parabola at 

conic altitude 

(𝑎𝑏𝑠 (
−12

5
)) and 

diameter (12/5). 

 

 

 

 

 

 

6

5

4

5

2
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1
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Figure 6: The chord Latus Rectum of the section parabola is line GH and lies on the cone 
diameter holding the section focus. 
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STEP 9. Change curve character mapping from 2-space to 3- space. 
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STEP 10. Construct cone generators (π/2, π, 3π/2, and 2π).  

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑙𝑜𝑡3𝐷[{{0, 𝑡, 2 𝑡}, {0, −𝑡, 2 𝑡}, {𝑡, 0,2 𝑡}, {−𝑡, 0,2 𝑡}}, {𝑡, −6,6}, 
𝑃𝑙𝑜𝑡𝑅𝑎𝑛𝑔𝑒−> {{−3,3}, {−3,3}, {−7,1/2}}, 𝑉𝑖𝑒𝑤𝑃𝑜𝑖𝑛𝑡−> {1,1,1}] 

 

We now use 3-D parametric graphing capability to construct a conic skeletal 

representation of a section parabola. I can only suggest repeat efforts to gain 

familiarity and imagined layout of parametric 3-D lines and curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 7: parametric construction of 4 generator; (2𝜋, 𝜋,

𝜋

2
, 𝑎𝑛𝑑 

3𝜋

2
). 
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STEP 11. Construct diameters holding the focus and latus rectum. 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐𝑃𝑙𝑜𝑡3𝐷[{{0, 𝑡, 2 𝑡}, {0, −𝑡, 2 𝑡}, {𝑡, 0,2 𝑡}, {−𝑡, 0,2 𝑡}, {𝐶𝑜𝑠[𝑡], 𝑆𝑖𝑛[𝑡], −2}, 
{6/5 𝐶𝑜𝑠[𝑡],6/5 𝑆𝑖𝑛[𝑡], −12/5}}, {𝑡, −6,6}, 

𝑃𝑙𝑜𝑡𝑅𝑎𝑛𝑔𝑒−> {{−3,3}, {−3,3}, {−7,1/2}}, 𝑉𝑖𝑒𝑤𝑃𝑜𝑖𝑛𝑡−> {1,1,1}] 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

unit circle diameter: {𝐶𝑜𝑠[𝑡], 𝑆𝑖𝑛[𝑡], −2}. 

Section focal diameter: {6/5 𝐶𝑜𝑠[𝑡],6/5 𝑆𝑖𝑛[𝑡], −12/5} 

 

 

Figure 8: construct 2 cone diameters. One for section vertex and one for section focus. 
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STEP 12. Construct the Principal axis of the curve. Use the vertex and focus as 

linear locators (two points needed to make a line) and ask Mathematica to 

compute the direction number. 

 

ParametricPlot3D[{{0, 𝑡, 2𝑡}, {0, −𝑡, 2𝑡}, {𝑡, 0,2𝑡}, {−𝑡, 0,2𝑡}, {Cos[𝑡], Sin[𝑡], −2}, 

{
6

5
Cos[𝑡],

6

5
Sin[𝑡],

−12

5
}, {0,1 +

𝑡

5
,−2 + 2

𝑡

5
}}, {𝑡, −6,6}, 

PlotRange → {{−3,3}, {−3,3}, {−7,
1

2
}}, ViewPoint → {1,1,1}] 

 

Section principal axis: 

{0,1 +
𝑡

5
, −2 + 2

𝑡

5
}.   

Note how section 

principal axis touches unit 

circle diameter location of 

section vertex as was 2-

space cone profile holding 

the cones principal axis. 

 

 

 

 

 

 

 

  

Figure 9: constructing the principal axis 
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ParametricPlot3D[{{0, 𝑡, 2𝑡}, {0, −𝑡, 2𝑡}, {𝑡, 0,2𝑡}, {−𝑡, 0,2𝑡}, {Cos[𝑡], Sin[𝑡], −2}, 

{
6

5
Cos[𝑡],

6

5
Sin[𝑡],

−12

5
}, {0,1 +

𝑡

5
,−2 + 2

𝑡

5
}, 

{0,
4

5
+ 4

𝑡

5
,
−12

5
+ (
−2𝑡

5
)}}, {𝑡, −6,6}, PlotRange → {{−3,3}, {−3,3}, {−7,

1

2
}}, 

ViewPoint → {1,1,1}] 

STEP 13. Next we construct the focal axis. Use the vertex diameter center and focus as linear 

locators (two points needed to make a line) and ask Mathematica to compute the direction 

number. 

(focus − vertex )
yields
→    (directionnumber) 

(focus + directionnumber
𝑦𝑖𝑒𝑙𝑑𝑠
→    (parametric description of focal axis) 

 

 

 

 

Section focal axis: 

1. {0 − 0,
4

5
− 0,

−12

5
− (−2)} 

2. {0,
4

5
, −

2

5
} 

3. {0,
4

5
+ 4

𝑡

5
,
−12

5
+ (

−2𝑡

5
)} 

 

 

{0,
4

5
+ 4

𝑡

5
,
−12

5
+ (

−2𝑡

5
)}. 

 

  

Figure 10: focal axis is normal with principal axis. 
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STEP 14. Next we construct the latus rectum. Use the focus and either latus rectum end point as 

linear locators (two points needed to make a line) and ask Mathematica to compute the 

direction number. 

 

{
2

√5
− 0,

4

5
−
4

5
,
−12

5
− (
−12

5
)}
𝑦𝑖𝑒𝑙𝑑𝑠
→    {

2

√5
, 0,0}

𝑦𝑖𝑒𝑙𝑑𝑠
→    {

2

√5
+ 2

𝑡

√5
,
4

5
,
−12

5
} 

ParametricPlot3D[{{0, 𝑡, 2𝑡}, {0, −𝑡, 2𝑡}, {𝑡, 0,2𝑡}, {−𝑡, 0,2𝑡}, {Cos[𝑡], Sin[𝑡], −2}, {
6

5
Cos[𝑡],

6

5
Sin[𝑡],

−12

5
}, 

{0,1 +
𝑡

5
, −2 + 2

𝑡

5
}, {0,

4

5
+ 4

𝑡

5
,
−12

5
+ (
−2𝑡

5
)}, {

2

√5
+ 2

𝑡

√5
,
4

5
,
−12

5
}}, 

{𝑡, −6,6}, PlotRange → {{−3,3}, {−3,3}, {−7,
1

2
}}, ViewPoint → {1,1,1}] 

I construct the latus 

rectum endpoint using 

the positive side of  

(x-axis). 

{
2

√5
+ 2

𝑡

√5
,
4

5
,
−12

5
}. 

 

1. {
2

√5
− 0,

4

5
−
4

5
,
−12

5
− (

−12

5
)} 

2. {
2

√5
, 0,0} 

3. {
2

√5
+ 2

𝑡

√5
,
4

5
,
−12

5
} 

 

 

 

 

  

Figure 11: constructing the latus rectum of the section parabola. 
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STEP 15.  We now construct the Apollonian section using the following SBG 

identity. 

{𝑡,
𝑡2

−4(
𝐴
𝑚)
+ (
𝐴

𝑚
),
𝑚(𝑡2)

−4(
𝐴
𝑚)
− 𝐴} ⟹ {𝑡,

𝑡2

−4
+ 1,2

𝑡2

−4
− 2} 

ParametricPlot3D[{{0, 𝑡, 2𝑡}, {0, −𝑡, 2𝑡}, {𝑡, 0,2𝑡}, {−𝑡, 0,2𝑡}, {Cos[𝑡], Sin[𝑡], −2}, 

{
6

5
Cos[𝑡],

6

5
Sin[𝑡],

−12

5
} , {0,1 +

𝑡

5
, −2 + 2

𝑡

5
} , {0,

4

5
+ 4

𝑡

5
,
−12

5
+ (
−2𝑡

5
)}, 

{
2

√5
+ 2

𝑡

√5
,
4

5
,
−12

5
}, {𝑡,

𝑡2

−4
+ 1,2

𝑡2

−4
− 2}}, {𝑡, −6,6}, 

PlotRange → {{−3,3}, {−3,3}, {−7,
1

2
}}, ViewPoint → {1,1,1}] 

 

Parametric 

construction of section 

parabola  (m = 2) cone. 

(𝑡,
𝑡2

−4(
𝐴
𝑚
)
+ (
𝐴

𝑚
) ,
𝑚(𝑡2)

−4 (
𝐴
𝑚
)
− 𝐴) 

{𝑡,
𝑡2

−4
+ 1,2

𝑡2

−4
− 2} 

THE SECTION CURVE CAN BE 

COMPUTER GENERATED 

USING THE FOLLOWING SBG 

IDENTITY. PARAMETRIC 

DESCRIPTION OF THE 

APOLLONIAN SECTION 

PARABOLA IS HIGHLIGHTED.  

Independent (t) will be x, 

and dependent (t) will be y 

composed as {
𝑡2

−4
+ 1}, 

and the z axis composition 

will place section vertex at 

{
2𝑡2

−4
− 2}.  

 
Figure 12: parametric computer-based construction of section parabola 
within a slope (m =2) right cone. 
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Finding the Unit Parabola Duo-curve properties of the unit parabola  

 

16. Our unit parabola essentially has one and only one point on the cone surface, its vertex. 

With one end point of its focal radius on the cone central axis, a unit parabola active focal 

radius will provide two reads (initial and final) concerning changing cone surface curvature 

using the other end point trace of loci curvature. At the initial (red) unit parabola focal radius 

contact with the (pi/2) generator and section vertex on our unit circle, we find cone surface 

curvature is one and the same as the cone diameter holding the vertex: RoC = 1 unit. Read of 

the blue final focal radius at twice the altitude on the (2pi) generator intercept shows cone 

surface (RoC = 2 units), demonstrating changing cone surface curvature produced by iterate 

right cone diameters, from initial to final, are recorded on the unit parabola locus by our unit 

parabola focal radius.  
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COPYRIGHT ORIGINAL GEOMETRY BY  

Sand Box Geometry LLC, a company dedicated to utility of Ancient Greek 

Geometry in pursuing exploration and discovery of Central Force Field Curves.  

Using computer parametric geometry code to construct the focus of an 

Apollonian parabola section within a right cone.  

“It is remarkable that the 

directrix does not appear 

at all in Apollonius great 

treatise on conics. The 

focal properties of the 

central conics are given 

by Apollonius, but the 

foci are obtained in a 

different way, without 

any reference to the 

directrix; the focus of the 

parabola does not appear 

at all... Sir Thomas Heath: 

“A HISTORY OF GREEK 

MATHEMATICS” page 

119, book II. 

 

Utility of a Unit Circle and 

Construct Function Unit Parabola may not be used without written permission of 

my publishing company Sand Box Geometry LLC      Alexander; CEO and copyright 

owner.  alexander@sandboxgeometry.com 

The computer is my sandbox, the unit circle my compass, and the focal radius of 

the unit parabola my straight edge. 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 

 

 

mailto:alexander@sandboxgeometry.com
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CAGE FREE THINKIN’ FROM THE SAND BOX 

The square space hypotenuse of Pythagoras is the secant connecting (π/2) spin 

radius (0, 1) with accretion point (2, 0). I will use the curved space hypotenuse, 

also connecting spin radius (π/2) with accretion point (2, 0), to analyze g-field 

mechanical energy curves.   

 

CSDA demonstration of a curved space hypotenuse and a square space  

hypotenuse together. 

We have two curved space hypotenuses because the gravity field is a symmetrical 

central force and will have an energy curve at the N pole and one at the S pole of 

spin; just as a bar magnet. When exploring changing acceleration energy curves of 

M2 orbits, we will use the N curve as our planet group approaches high energy 

perihelion on the north time/energy curve.  

 

ALΣXANDΣR; CEO SAND BOX GEOMETRY LLC 
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